6 research outputs found

    A Possible Change Process of Inflammatory Cytokines in the Prolonged Chronic Stress and Its Ultimate Implications for Health

    Get PDF
    Sustained stress triggers series of changes in the brain and the body. At the early stage of stress, the activated hypothalamus-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) axis can upregulate the levels of glucocorticoid (GCs) and catecholamines (CAs), respectively, and then they in turn inhibit the secretion of proinflammatory cytokines directly or indirectly while promoting the secretion of anti-inflammatory cytokines. At the prolonged stage, the sustained activated HPA demonstrates cortisol-resistance. At the same time, the inflammation related transcription pathway, such as nuclear-factor kappa-B (NF-κB) signaling, may be inhibited. Additionally, the inflammatory cytokines mediate a negative feedback regulation on themselves. Collectively, these regulations may increase the proinflammatory cytokines while decreasing the anti-inflammatory cytokines. This may further activate NF-κB and increase the proinflammation cytokines, which in turn reduce the inflammatory responses, contributing to various diseases

    Transgenerational inheritance of paternal neurobehavioral phenotypes: stress, addiction, ageing and metabolism

    Get PDF
    Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants

    The Integrative Effects of Leading by Example and Follower Traits in Public Goods Game: A Multilevel Study

    No full text
    As an important way to understand leadership based on voluntary contribution mechanisms, the importance of leading by example to teamwork is becoming more and more evident in recent years. However, existing theories based on signaling and reciprocity perspectives, respectively, provide incomplete theoretical explaining. This study adds clarity by conducting a cross-level study that indicates a possible integrative framework of both signaling and reciprocity perspective on leading by example. Results were using data gathered from 130 Chinese college students, which were allocated into one baseline group and three experimental groups. A hierarchical model was used to examine the effects of leading by example on different levels. It is found that leading by example has positive effects on the cooperation of followers on both the group level and the individual level. Risk attitudes have positive effects on the cooperation of followers while trust attitudes have negative effects. Our findings suggest that both leading by example and personal traits significantly influence cooperation but on different levels. It also reminds us that a more systematic way to understand leadership is needed

    Recovery of Chronic Stress-Triggered Changes of Hippocampal Glutamatergic Transmission

    No full text
    Chronic stress results in neurochemical, physiological, immune, molecular, cellular, and structural changes in the brain and often dampens the cognition. The hippocampus has been one major focus in studying the stress responsivity and neural mechanisms underlying depression. Both acute and chronic stress stimuli lead to dynamic changes in excitatory transmission in the hippocampus. The present study examined the potential effects of spontaneous recovery after chronic stress on spatial memory function and glutamatergic transmission in the hippocampus. The results showed that chronic unpredicted mild stress transiently increased AMPA receptor GluA2/3 subunit expression, together with elevated PICK-1 protein expression. Spontaneous recovery restored the behavioral deficits in Barnes maze test, as well as the glutamate receptor expression changes. In conclusion, spontaneous recovery acts as an important mechanism in system homeostasis
    corecore