11 research outputs found

    Comparative phylogeography of the plateau zokor (Eospalax baileyi) and its host-associated flea (Neopsylla paranoma) in the Qinghai-Tibet Plateau

    Get PDF
    Background: Specific host-parasite systems often embody a particular co-distribution phenomenon, in which the parasite’s phylogeographic pattern is dependent on its host. In practice, however, both congruent and incongruent phylogeographic patterns between the host and the parasite have been reported. Here, we compared the population genetics of the plateau zokor (Eospalax baileyi), a subterranean rodent, and its host-associated flea species, Neopsylla paranoma, with an aim to determine whether the two animals share a similar phylogeographic pattern. Results: We sampled 130 host-parasite pairs from 17 localities in the Qinghai-Tibet Plateau (QTP), China, and sequenced a mitochondrial DNA (mtDNA) segment (~2,500 bp), including the complete COI and COII genes. We also detected 55 zokor and 75 flea haplotypes. AMOVA showed that the percentage of variation among the populations of zokors constituted 97.10%, while the within population variation was only 2.90%; for fleas, the values were 85.68% and 14.32%, respectively. Moreover, the flea Fst (fixation index) values were significantly smaller than in zokor. Although the Fst values between zokors and fleas were significantly and positively correlated (N =105, R =0.439, p =0.000), only a small amount (R2= 0.19) of the flea Fst variations could be explained by the zokor Fst variations. The two animals showed very distinct haplotype network structures from each other while co-phylogenetic analyses were unable to reject the hypothesis of an independence of speciation events. Conclusions: Zokors and fleas have very distinct population genetic patterns from each other, likely due to the influence of other sympatrically-distributed vertebrates on the transmission of fleas

    The effects of aB-crystallin on mitochondrial death pathway during hydrogen peroxide induced apoptosis

    Get PDF
    aB-crystallin, a major small heat shock protein, has recently been shown to exert inhibitory effects on apoptosis, while the responsible mechanisms remain largely unknown. In the present study, we discovered that aB-crystallin protected mouse myoblast C2C12 cells against oxidative stress-induced apoptosis. During hydrogen peroxide-induced apoptosis, aBcrystallin showed that it decreased the redistribution level of phosphatidylserine (PS), reduced the release of cytochrome C and Smac/Diablo from mitochondria into cytoplasm, and decreased the cleavage of Bid. Interestingly, immunoprecipitation experiments with anti-aBcrystallin and anti-myc-tag antibodies demonstrated respectively an interaction between aBcrystallin and p53 during hydrogen peroxide induced apoptosis. Both the NH2-terminal and COOH-terminal regions of aB-crystallin could interact with p53, suggesting two domains of aB-crystallin are necessary for the interaction. Electrophoresis mobility shift assay (EMSA) and luciferase assay further demonstrated that aB-crystallin inhibited the upregulation of the DNA-binding, as well as the transactivation activity of p53 induced by hydrogen peroxide. Our results show that aB-crystallin has a protective role in oxidative stress induced apoptosis by interference with the mitochondrial death pathway

    Regulation of Wnt Singaling Pathway by Poly (ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Lung Cancer in Mice Induced by Benzo(a)pyrene Inhalation Exposure

    Get PDF
    Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that specifically causes cancer and is widely distributed in the environment. Poly (ADP-ribosylation), as a key post-translational modification in BaP-induced carcinogenesis, is mainly catalyzed by poly (ADP-ribose) glycohydrolase (PARG) in eukaryotic organisms. Previously, it is found that PARG silencing can counteract BaP-induced carcinogenesis in vitro, but the mechanism remained unclear. In this study, we further examined this process in vivo by using heterozygous PARG knockout mice (PARG+/−). Wild-type and PARG+/− mice were individually treated with 0 or 10 μg/m3 BaP for 90 or 180 days by dynamic inhalation exposure. Pathological analysis of lung tissues showed that, with extended exposure time, carcinogenesis and injury in the lungs of WT mice was progressively worse; however, the injury was minimal and carcinogenesis was not detected in the lungs of PARG+/− mice. These results indicate that PARG gene silencing protects mice against lung cancer induced by BaP inhalation exposure. Furthermore, as the exposure time was extended, the protein phosphorylation level was down-regulated in WT mice, but up-regulated in PARG+/− mice. The relative expression of Wnt2b and Wnt5b mRNA in WT mice were significantly higher than those in the control group, but there was no significant difference in PARG+/− mice. Meanwhile, the relative expression of Wnt2b and Wnt5b proteins, as assessed by immunohistochemistry and Western blot analysis, was significantly up-regulated by BaP in WT mice; while in PARG+/− mice it was not statistically affected. Our work provides initial evidence that PARG silencing suppresses BaP induced lung cancer and stabilizes the expression of Wnt ligands, PARG gene and Wnt ligands may provide new options for the diagnosis and treatment of lung cancer

    Data from: Comparative phylogeography of the plateau zokor (Eospalax baileyi) and its host-associated flea (Neopsylla paranoma) in the Qinghai-Tibet Plateau

    No full text
    Background: Specific host-parasite systems often embody a particular co-distribution phenomenon, in which the parasite’s phylogeographic pattern is dependent on its host. In practice, however, both congruent and incongruent phylogeographic patterns between the host and the parasite have been reported. Here, we compared the population genetics of the plateau zokor (Eospalax baileyi), a subterranean rodent, and its host-associated flea species, Neopsylla paranoma, with an aim to determine whether the two animals share a similar phylogeographic pattern. Results: We sampled 130 host-parasite pairs from 17 localities in the Qinghai-Tibet Plateau (QTP), China, and sequenced a mitochondrial DNA (mtDNA) segment (~2,500 bp), including the complete COI and COII genes. We also detected 55 zokor and 75 flea haplotypes. AMOVA showed that the percentage of variation among the populations of zokors constituted 97.10%, while the within population variation was only 2.90%; for fleas, the values were 85.68% and 14.32%, respectively. Moreover, the flea Fst (fixation index) values were significantly smaller than in zokor. Although the Fst values between zokors and fleas were significantly and positively correlated (N =105, R =0.439, p =0.000), only a small amount (R2= 0.19) of the flea Fst variations could be explained by the zokor Fst variations. The two animals showed very distinct haplotype network structures from each other while co-phylogenetic analyses were unable to reject the hypothesis of an independence of speciation events. Conclusions: Zokors and fleas have very distinct population genetic patterns from each other, likely due to the influence of other sympatrically-distributed vertebrates on the transmission of fleas

    tree files and sequence alignments

    No full text
    The tree_and_alignment.zip includes two folds, the treefile and the alignment. The fole "treefile" contains all trees reconstructed from the corresponding alignments in the "alignment" fold. For details please see the readme.txt file. All files can be opened by text editor such as Editplus or other free editor programs. Also, the tree files can be viewed by FigTree, and the alignments can be viewed by MEGA

    Nucleolin/C23 is a negative regulator of hydrogen peroxide-induced apoptosis in HUVECs

    No full text
    Nucleolin plays important roles in chromatin structure, rDNA transcription, rRNA maturation, nucleocytoplasmic transport, and ribosome assembly. Although it has been shown to be anti-apoptotic, the underlying mechanisms remain unclear. In the current study, we first examined endogenous nucleolin expression in response to oxidative stress-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). Flow cytometry and caspase activity assays showed that H2O2 treatment caused apoptosis of the cells; reverse-transcription polymerase chain reaction and Western blotting revealed the downregulation of nucleolin expression and increased protein cleavage during this process. Overexpression of nucleolin protein by transfecting cells with the full-length nucleolin cDNA inhibited apoptosis, but nucleolin deficiency brought about by transfection with antisense oligonucleotide increased apoptosis of HUVECs. Concurrently, the expression of the apoptotic protein gene Bax was also downregulated following nucleolin overexpression. All these results indicate an important negative regulatory role for nucleolin in the apoptosis of endothelial cells, likely involving the Bax pathway

    Increased stability of Bcl-2 in HSP70-mediated protection against apoptosis induced by oxidative stress

    No full text
    We have previously shown that heat shock protein 70 (HSP70) markedly inhibits H2O2-induced apoptosis in mouse C2C12 myogenic cells by reducing the release of Smac. However, the molecular mechanism by which HSP70 interferes with Smac release during oxidative stress-induced apoptosis is not understood. In the current study, we showed that HSP70 increased the stability of Bcl-2 during oxidative stress. An antisense phosphorothioate oligonucleotide against Bcl-2 caused selective inhibition of Bcl-2 protein expression induced by HSP70 and significantly attenuated HSP70-mediated cell protection against H2O2-induced release of Smac and apoptosis. Taken together, our results indicate that there are important relationships among HSP70, Bcl-2, release of Smac, and induction of apoptosis by oxidative stress
    corecore