266 research outputs found

    Diaqua­bis(N,N′-dibenzyl­ethane-1,2-diamine-κ2 N,N′)nickel(II) dichloride N,N-dimethyl­formamide solvate

    Get PDF
    The asymmetric unit of the title complex, [Ni(C16H20N2)2(H2O)2]Cl2·C3H7NO, consists of two NiII atoms, each lying on an inversion center, two Cl anions, two N,N′-dibenzyl­ethane-1,2-diamine ligands, two coordinated water mol­ecules and one N,N-dimethyl­formamide solvent mol­ecule. Each NiII atom is six-coordinated in a distorted octa­hedral coordination geometry, with the equatorial plane formed by four N atoms and the axial positions occupied by two water mol­ecules. The complex mol­ecules are linked into a chain along [001] by N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds. The C atoms and H atoms of the solvent mol­ecule are disordered over two sites in a ratio of 0.52 (2):0.48 (2)

    Inhibitory Effect of Ginsenoside Rg1 on Vascular Smooth Muscle Cell Proliferation Induced by PDGF-BB Is Involved in Nitric Oxide Formation

    Get PDF
    Ginsenoside Rg1 (Rg1) has been reported to suppress the proliferation of vascular smooth muscle cells (VSMCs). This study aimed to observe the role of nitric oxide (NO) in Rg1-antiproliferative effect. VSMCs from the thoracic aorta of SD rats were cultured by tissue explant method, and the effect of Rg1 (20 mg·L−1, 60 mg·L−1, and 180 mg·L−1) on platelet-derived growth factor-BB (PDGF-BB)-induced proliferation was evaluated by MTT assay. The cell cycle was analyzed by flow cytometry. For probing the mechanisms, the content of NO in supernatant and cGMP level in VSMCs was measured by nitric oxide kit and cGMP radio-immunity kit, respectively; the expressions of protooncogene c-fos and endothelial NO synthase (eNOS) mRNA in the VSMCs were detected by real-time RT-PCR; the intracellular free calcium concentration ([Ca2+]i) was detected with Fura-2/AM-loaded VSMCs. Comparing with that in normal group, Rg1 180 mg·L−1 did not change the absorbance of MTT and cell percent of G0/G1, G2/M, and S phase in normal cells (P > 0.05). Contrarily, PDGF-BB could increase the absorbance of MTT (P < 0.01) and the percent of the S phase cells but decrease the G0/G1 phase cell percent in the cell cycle, accompanied with an upregulating c-fos mRNA expression (P < 0.01), which was reversed by additions of Rg1(20 mg·L−1, 60 mg·L−1, and 180 mg·L−1). Rg1 administration could also significantly increase the NO content in supernatant and the cGMP level in VSMCs, as well as the eNOS mRNA expression in the cells, in comparison of that in the group treated with PDGF-BB alone (P < 0.01). Furthermore, Rg1 caused a further increase in the elevated [Ca2+]i induced by PDGF-BB. It was concluded that Rg1 could inhibit the VSMC proliferation induced by PDGF-BB through restricting the G0/G1 phase to S-phase progression in cell cycle. The mechanisms may be related to the upregulation of eNOS mRNA and the increase of the formation of NO and cGMP

    Icariin Attenuates OGD/R-Induced Autophagy via Bcl-2-Dependent Cross Talk between Apoptosis and Autophagy in PC12 Cells

    Get PDF
    Icariin (ICA), an active component of Epimedium brevicornum Maxim, exerts a variety of neuroprotective effects such as antiapoptosis. However, the mechanisms underlying antiapoptosis of ICA in neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) are unclear. The B-cell lymphoma-2 (Bcl-2) protein family plays an important role in the regulation of apoptosis and autophagy through Bcl-2-dependent cross talk. Bcl-2 suppresses apoptosis by binding to Bax and inhibits autophagy by binding to Beclin-1 which is an autophagy related protein. In the present study, MTT result showed that ICA increased cell viability significantly in OGD/R treated PC12 cells (P<0.01). Results of western blotting analysis showed that ICA increased Bcl-2 expression significantly and decreased expressions of Bax, cleaved Caspase-3, Beclin-1, and LC3-II significantly in OGD/R treated PC12 cells (P<0.01). These results suggest that ICA protects PC12 cells from OGD/R induced autophagy via Bcl-2-dependent cross talk between apoptosis and autophagy

    4-Nonylphenol induces autophagy and attenuates mTOR-p70S6K/4EBP1 signaling by modulating AMPK activation in Sertoli cells

    Get PDF
    The estrogenic chemical 4-nonylphenol (NP) is known to impair testicular devolopment and spermatogenesis in rodents. The objective of this study was to explore the effects of NP on autophagy induction and AMPK-mTOR signaling pathway in Sertoli cells (SCs), which are the “nursemaid cells” for meiosis of spermatocytes. In this study we exposed 7-week-old male rats to NP by intra-peritoneal injection at 0, 20, 50 or 100 mg/kg body weight/2 days for 20 consecutive days. Our results showed that exposure to NP dose-dependently induces the formation of autophagosomes in SCs, increases the expression of Beclin-1, the conversion of LC3-I to LC3-II and the mRNA expression of Atg3, Atg5, Atg7 and Atg12 in testis, and these effects are concomitant with the activation of AMPK, and the suppression of TSC2-mTOR-p70S6K/4EBP1 signaling cascade in testis. Furthermore, 10 µM Compound C or AMPKα1 siRNA pre-treatment effectively attenuated autophagy and reversed AMPK-mTOR-p70S6K/4EBP1 signaling in NP-treated SCs. Co-treatment with 1 mM AICAR remarkably strengthened NP-induced autophagy and mTOR inhibition in SCs. Together, these data suggest that NP stimulates Sertoli cell autophagy and inhibits mTOR-p70S6K/4EBP1 activity through AMPK activation, which is the potential mechanism responsible for the regulation of testis function and differentiation following NP exposure

    Genomewide association study of leprosy.

    Get PDF
    BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae

    Hydrogen Sulfide Attenuated Tumor Necrosis Factor-α-Induced Inflammatory Signaling and Dysfunction in Vascular Endothelial Cells

    Get PDF
    S donor) on tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) dysfunction.Application of NaHS concentration-dependently suppressed TNF-α-induced mRNA and proteins expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), mRNA expression of P-selectin and E-selectin as well as U937 monocytes adhesion to HUVEC. Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of NaHS. Furthermore, TNF-α-induced NF-κB activation assessed by IκBα degradation and p65 phosphorylation and nuclear translocation and ROS production were diminished in cells subjected to treatment with NaHS.S can exert an anti-inflammatory effect in endothelial cells through a mechanism that involves the up-regulation of HO-1
    corecore