8,040 research outputs found

    Estimates for parameters and characteristics of the confining SU(3)-gluonic field in an η\eta^\prime-meson

    Full text link
    The confinement mechanism proposed earlier by the author is applied to estimate the possible parameters of the confining SU(3)-gluonic field in an η\eta^\prime-meson. For this aim the electric form factor of an η\eta^\prime-meson is nonperturbatively computed in an explicit analytic form. The estimates obtained are also consistent with the width of the electromagnetic decay η2γ\eta^\prime\to2\gamma. The corresponding estimates of the gluon concentrations, electric and magnetic colour field strengths are also adduced for the mentioned field at the scales of the meson under consideration.Comment: 20 pages, LaTe

    Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas

    Full text link
    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose--Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L^3 the sum of the cycle probabilities of length k >> L^2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the \pi_k in the thermodynamic limit. We also determine the function \pi_k for arbitrary systems. Furthermore we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.Comment: 6 pages, extensive rewriting, new section on maximum-length cycle

    Asymptotic normalization coefficients for mirror virtual nucleon decays in a microscopic cluster model

    Get PDF
    It has been suggested recently (Phys. Rev. Lett. 91, 232501 (2003)) that charge symmetry of nucleon-nucleon interactions relates the Asymptotic Normalization Coefficients (ANCs) of proton and neutron virtual decays of mirror nuclei. This relation is given by a simple analytical formula which involves proton and neutron separation energies, charges of residual nuclei and the range of their strong interaction with the last nucleon. Relation between mirror ANCs, if understood properly, can be used to predict astrophysically relevant direct proton capture cross sections using neutron ANCs measured with stable beams. In this work, we calculate one-nucleon ANCs for several light mirror pairs, using microscopic two-, three- and four-cluster models, and compare the ratio of mirror ANCs to the predictions of the simple analytic formula. We also investigate mirror symmetry between other characteristics of mirror one-nucleon overlap integrals, namely, spectroscopic factors and single-particle ANCs.Comment: 12 pages, submitted to Phys. Rev.

    Phase diagram and critical properties in the Polyakov--Nambu--Jona-Lasinio model

    Full text link
    We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio model at finite temperature and nonzero chemical potential with three quark flavours. Chiral and deconfinement phase transitions are discussed, and the relevant order-like parameters are analyzed. The results are compared with simple thermodynamic expectations and lattice data. A special attention is payed to the critical end point: as the strength of the flavour-mixing interaction becomes weaker, the critical end point moves to low temperatures and can even disappear.Comment: Talk given at the 9th International Conference on Quark Confinement and the Hadron Spectrum - QCHS IX, Madrid, Spain, 30 August - September 201

    Determination of ambiguity ellipse parameters at two dimensions using generalized method of uncertainty centre

    Get PDF
    Definition of empirical dependence parameters at two dimensions using ambiguity ellipse algorithm in a generalized method of uncertainty centre has been considered. The algorithm of optimal parameters definition is offere

    THz spectroscopy in the pseudo-Kagome system Cu3Bi(SeO3)2O2Br

    Full text link
    Terahertz (THz) transmission spectra have been measured as function of temperature and magnetic field on single crystals of Cu3Bi(SeO3)2O2Br. In the time-domain THz spectra without magnetic field, two resonance absorptions are observed below the magnetic ordering temperature T_N~27.4 K. The corresponding resonance frequencies increase with decreasing temperature and reach energies of 1.28 and 1.23 meV at 3.5 K. Multi-frequency electron spin resonance transmission spectra as a function of applied magnetic field show the field dependence of four magnetic resonance modes, which can be modeled as a ferromagnetic resonance including demagnetization and anisotropy effects.Comment: 5 pages, 3 figures. All comments are welcome and appreciate

    Poisson's ratio in cryocrystals under pressure

    Get PDF
    We present results of lattice dynamics calculations of Poisson's ratio (PR) for solid hydrogen and rare gas solids (He, Ne, Ar, Kr and Xe) under pressure. Using two complementary approaches - the semi-empirical many-body calculations and the first-principle density-functional theory calculations we found three different types of pressure dependencies of PR. While for solid helium PR monotonically decreases with rising pressure, for Ar, Kr, and Xe it monotonically increases with pressure. For solid hydrogen and Ne the pressure dependencies of PR are non-monotonic displaying rather deep minimums. The role of the intermolecular potentials in this diversity of patterns is discussed.Comment: Fizika Nizkikh Temperatur 41, 571 (2015

    Functional Approach to Stochastic Inflation

    Full text link
    We propose functional approach to the stochastic inflationary universe dynamics. It is based on path integral representation of the solution to the differential equation for the scalar field probability distribution. In the saddle-point approximation scalar field probability distributions of various type are derived and the statistics of the inflationary-history-dependent functionals is developed.Comment: 20 pages, Preprint BROWN-HET-960, uses phyzz

    Thermodynamical properties of metric fluctuations during inflation

    Full text link
    I study a thermodynamical approach to scalar metric perturbations during the inflationary stage. In the power-law expanding universe here studied, I find a negative heat capacity as a manifestation of superexponential growing for the number of states in super Hubble scales. The power spectrum depends on the Gibbons-Hawking and Hagedorn temperatures.Comment: 7 pages, no figures (accepted to publication in General Relativity and Gravitation
    corecore