39 research outputs found

    Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data

    Get PDF
    This study assesses the detailed water budget of the Saq–Ram Aquifer System (520 000 km2) over the 2002–2019 period using satellite gravity data from the Gravity Recovery And Climate Experiment (GRACE). The three existing GRACE solutions were tested for their local compatibility to compute groundwater storage (GWS) variations in combination with the three soil moisture datasets available from the land surface models (LSMs) of the Global Land Data Assimilation System (GLDAS). Accounting for groundwater pumping, artificial recharge, and natural discharge uniformly distributed over the Saq–Ram domain, the GRACE-derived mass balance calculation for water yields a long-term estimate of the domain-averaged natural recharge of (2.4±1.4) mm yr−1, corresponding to (4.4±2.6) % of the annual average rainfall (AAR). Beyond the regional-scale approach proposed here, spatial heterogeneities regarding the groundwater recharge were identified. The first source of heterogeneity is of anthropogenic origin: chiefly induced by irrigation excess over irrigated surfaces (about 1 % of the domain), artificial recharge corresponds to half of the total recharge of the aquifer. The second source of recharge heterogeneity identified here is natural: volcanic lava deposits (called harrats on the Arabian Peninsula) which cover 8 % of the Saq–Ram aquifer domain but contribute to more than 50 % of the natural recharge. Hence, in addition to this application on the Arabian Peninsula, this study strongly indicates a major control of geological context on arid aquifer recharge, which has been poorly discussed hitherto. Due to large lag times of the diffuse recharge mechanism, the annual analysis using this GRACE–GLDAS approach in arid domains should be limited to areas where focused recharge is the main mechanism, while long-term analysis is valid regardless of the recharge mechanism. Moreover, it appears that about 15 years of GRACE records are required to obtain a relevant long-term recharge estimate.</p

    Analytical and numerical solutions for alternative overpressuring processes: Application to the Callovo-Oxfordian sedimentary sequence in the Paris basin, France

    No full text
    International audiencePrevious studies that made use of basin models have shown that the normal geological evolution of the Paris basin does not generate the observed, albeit weak, excess pressures in some shale layers of the basin. Other processes that may have created the overpressures, currently neglected in such models, are investigated here. Terms accounting for osmotic effects and tectonic stress changes are successively added to the diffusivity equation. The effect of changes in outcrop boundary conditions is also calculated with a pseudo-two-dimensional analytical solution. These solutions are applied to the Callovo-Oxfordian shale formation in the eastern part of the Paris basin, France. It is shown that a long-term transient osmotic effect starting in the Tertiary could explain in part the observed excess pressures in the Callovo-Oxfordian shale assuming effective diffusion coefficients of 1-5 x 10(-12) m(2) s(-1) in line with the measurements and a pore radius b around 20 Angstrom for the shales. However, because of the uncertainty on the value of the shale pore radius, additional head measurements and osmotic experiments on samples should be made to fully establish the possibility of an osmotic process. Our study also shows that recent changes in hydrodynamic boundary conditions could also explain excess pressure distribution in this shale layer. It is plausible that a combination of the two processes could best explain the distribution and intensity of the "overpressures.'' Tectonic stress changes do not appear to be important; it is shown that for such processes, to maintain high pressures, strong and recent increase in tectonic compressive stress would be required

    Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field

    No full text
    International audienceThe quality of the water from a riverbank well field is the result of the mixing ratios between the surface water and the local and regional groundwater. The mixing ratio is controlled by the complex processes involved in the surface water–groundwater interactions. In addition, the drawdown of the groundwater level greatly determines the water head differences between the river water and groundwater, as well as the field flowpath inside the alluvial plain, which subsequently impacts the water origin in the well. In common view, groundwater flows from both sides of the valley towards the river, and the groundwater divide is located at the middle of the river. Here, we studied the standard case of a river connected with an alluvial aquifer exploited by a linear pumping field on one riverbank, and we proposed to determine the physical parameters controlling the occurrence of groundwater flow below the river from one bank to the other (cross-riverbank flow). For this purpose, a 2D saturated–unsaturated flow numerical model is used to analyze the groundwater flowpath below a streambed. The alternative scenarios of surface water–groundwater interactions considered here are based on variable regional gradient conditions, pumping conditions, streambed clogging and the aquifer thickness to the river width ratio (aspect ratio). Parameters such as the aspect ratio and the properties of the clogging layer play a crucial role in the occurrence of this flow, and its magnitude increases with the aquifer thickness and the streambed clogging. We demonstrate that for an aspect ratio below 0.2, cross-riverbank flow is negligible. Conversely, when the aspect ratio exceeds 0.7, 20% of the well water comes from the other bank and can even exceed the river contribution when the aspect ratio reaches 0.95. In this situation, contaminant transfers from the opposite riverbank should not be neglected even at low clogging

    Experimental and numerical assessment of transient stream-aquifer exchange during disconnection

    No full text
    International audienceUnderstanding the state of connection processes of stream-aquifer systems is of great interest for water resources management, particularly in semi-arid regions and where groundwater is extracted in the vicinity of a river bank. Here we present a combined experimental-numerical study to explain physical processes involved in disconnected stream-aquifer systems. A stream-aquifer sand box was built to measure the infiltration rate through the stream bed during aquifer drainage. The pressures in the saturated zone of the aquifer and the infiltration rate were measured in order to quantify the fluid flow in this system. The transient transitional stage between connected and disconnected flow regimes, which was obtained experimentally, is characterised by a maximum infiltration rate across the stream bed before a decrease towards a constant value. This behaviour is analysed by means of transient numerical simulations using relevant hydrodynamic parameters. The importance of the drainage kinematics and unsaturated zone parameters for the temporal variation of the infiltration rate is demonstrated. The possible occurrence of a maximum infiltration rate value during the transitional stage is characterised into a general view of the stream-aquifer disconnection with direct implications for pumping near a stream
    corecore