111 research outputs found

    De Novo Assembly Of Candida Sojae And Candida Boidinii Genomes, Unexplored Xylose-consuming Yeasts With Potential For Renewable Biochemical Production.

    Get PDF
    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection.

    A web-based bioinformatics interface applied to the GENOSOJA project: databases and pipelines

    Get PDF
    The Genosoja consortium is an initiative to integrate different omics research approaches carried out in Brazil. Basically, the aim of the project is to improve the plant by identifying genes involved in responses against stresses that affect domestic production, like drought stress and Asian Rust fungal disease. To do so, the project generated several types of sequence data using different methodologies, most of them sequenced by next generation sequencers. The initial stage of the project is highly dependent on bioinformatics analysis, providing suitable tools and integrated databases. In this work, we describe the main features of the Genosoja web database, including the pipelines to analyze some kinds of data (ESTs, SuperSAGE, microRNAs, subtractive cDNA libraries), as well as web interfaces to access information about soybean gene annotation and expression.203211Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance

    Get PDF
    The legume Glycine max (soybean) plays an important economic role in the international commodities market, with a world production of almost 260 million tons for the 2009/2010 harvest. The increase in drought events in the last decade has caused production losses in recent harvests. This fact compels us to understand the drought tolerance mechanisms in soybean, taking into account its variability among commercial and developing cultivars. In order to identify single nucleotide polymorphisms (SNPs) in genes up-regulated during drought stress, we evaluated suppression subtractive libraries (SSH) from two contrasting cultivars upon water deprivation: sensitive (BR 16) and tolerant (Embrapa 48). A total of 2,222 soybean genes were up-regulated in both cultivars. Our method identified more than 6,000 SNPs in tolerant and sensitive Brazilian cultivars in those drought stress related genes. Among these SNPs, 165 (in 127 genes) are positioned at soybean chromosome ends, including transcription factors (MYB, WRKY) related to tolerance to abiotic stress.331334Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    • …
    corecore