28 research outputs found

    Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders

    Get PDF
    How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development

    Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period

    Get PDF
    The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer’s formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called phylotypic period (i.e., during mid-embryogenesis). According to the hourglass model, body plan conservation would depend on constrained molecular mechanisms operating at this period. More recently, comparative transcriptomic analyses have provided conclusive evidence that such molecular constraints exist. Examining cis-regulatory architecture during the phylotypic period is essential to understand the evolutionary source of body plan stability. Here we compare transcriptomes and key epigenetic marks (H3K4me3 and H3K27ac) from medaka (Oryzias latipes) and zebrafish (Danio rerio), two distantly related teleosts separated by an evolutionary distance of 115-200 Myr. We show that comparison of transcriptome profiles correlates with anatomical similarities and heterochronies observed at the phylotypic stage. Through comparative epigenomics, we uncover a pool of conserved regulatory regions (approximate to 700), which are active during the vertebrate phylotypic period in both species. Moreover, we show that their neighboring genes encode mainly transcription factors with fundamental roles in tissue specification. We postulate that these regulatory regions, active in both teleost genomes, represent key constrained nodes of the gene networks that sustain the vertebrate body plan

    Drosophila Araucan and Caupolican Integrate Intrinsic and Signalling Inputs for the Acquisition by Muscle Progenitors of the Lateral Transverse Fate

    Get PDF
    A central issue of myogenesis is the acquisition of identity by individual muscles. In Drosophila, at the time muscle progenitors are singled out, they already express unique combinations of muscle identity genes. This muscle code results from the integration of positional and temporal signalling inputs. Here we identify, by means of loss-of-function and ectopic expression approaches, the Iroquois Complex homeobox genes araucan and caupolican as novel muscle identity genes that confer lateral transverse muscle identity. The acquisition of this fate requires that Araucan/Caupolican repress other muscle identity genes such as slouch and vestigial. In addition, we show that Caupolican-dependent slouch expression depends on the activation state of the Ras/Mitogen Activated Protein Kinase cascade. This provides a comprehensive insight into the way Iroquois genes integrate in muscle progenitors, signalling inputs that modulate gene expression and protein activity

    Genome-Wide Tissue-Specific Occupancy of the Hox Protein Ultrabithorax and Hox Cofactor Homothorax in Drosophila

    Get PDF
    The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly

    Mammalian MicroRNA Prediction through a Support Vector Machine Model of Sequence and Structure

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are endogenous small noncoding RNA gene products, on average 22 nt long, found in a wide variety of organisms. They play important regulatory roles by targeting mRNAs for degradation or translational repression. There are 377 known mouse miRNAs and 475 known human miRNAs in the May 2007 release of the miRBase database, the majority of which are conserved between the two species. A number of recent reports imply that it is likely that many mammalian miRNAs remain to be discovered. The possibility that there are more of them expressed at lower levels or in more specialized expression contexts calls for the exploitation of genome sequence information to accelerate their discovery. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we describe a computational method-mirCoS-that uses three support vector machine models sequentially to discover new miRNA candidates in mammalian genomes based on sequence, secondary structure, and conservation. mirCoS can efficiently detect the majority of known miRNAs and predicts an extensive set of hairpin structures based on human-mouse comparisons. In total, 3476 mouse candidates and 3441 human candidates were found. These hairpins are more similar to known miRNAs than to negative controls in several aspects not considered by the prediction algorithm. A significant fraction of predictions is supported by existing expression evidence. CONCLUSIONS/SIGNIFICANCE: Using a novel approach, mirCoS performs comparably to or better than existing miRNA prediction methods, and contributes a significant number of new candidate miRNAs for experimental verification

    A polymorphic enhancer near GREM1 influences bowel cancer risk through differential CDX2 and TCF7L2 binding

    Get PDF
    A rare germline duplication upstream of the bone morphogenetic protein antagonist GREM1 causes aMendelian-dominant predisposition to colorectal cancer (CRC). The underlying disease mechanism is strong, ectopic GREM1 overexpression in the intestinal epithelium. Here, we confirm that a common GREM1 polymorphism, rs16969681, is also associated with CRC susceptibility, conferring ~20% differential risk in the general population. We hypothesized the underlying cause to be moderate differences inGREM1 expression. We showed that rs16969681 lies in a region of active chromatin with allele- and tissue-specific enhancer activity. The CRC high-risk allele was associated with stronger gene expression, and higher Grem1 mRNA levels increased the intestinal tumor burden in ApcMin mice. The intestine-specific transcription factor CDX2 and Wnt effector TCF7L2 bound near rs16969681, with significantly higher affinity for the risk allele, and CDX2 overexpression in CDX2/GREM1-negative cells caused re-expression of GREM1. rs16969681 influences CRC risk through effects on Wnt-driven GREM1 expression in colorectal tumors. © 2014 The Authors
    corecore