4 research outputs found

    The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population-Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight

    No full text
    Background: The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases. Objectives: To perform the largest PD genome-wide association study restricted to a single country. Methods: We performed a GWAS for both risk of PD and age at onset in 7,849 Spanish individuals. Further analyses included population-specific risk haplotype assessments, polygenic risk scoring through machine learning, Mendelian randomization of expression, and methylation data to gain insight into disease-associated loci, heritability estimates, genetic correlations, and burden analyses. Results: We identified a novel population-specific genome-wide association study signal at PARK2 associated with age at onset, which was likely dependent on the c.155delA mutation. We replicated four genome-wide independent signals associated with PD risk, including SNCA, LRRK2, KANSL1/MAPT, and HLA-DQB1. A significant trend for smaller risk haplotypes at known loci was found compared to similar studies of non-Spanish origin. Seventeen PD-related genes showed functional consequence by two-sample Mendelian randomization in expression and methylation data sets. Long runs of homozygosity at 28 known genes/loci were found to be enriched in cases versus controls. Conclusions: Our data demonstrate the utility of the Spanish risk haplotype substructure for future fine-mapping efforts, showing how leveraging unique and diverse population histories can benefit genetic studies of complex diseases. The present study points to PARK2 as a major hallmark of PD etiology in Spain.This research was supported, in part, by the Intramural Research Program of the National Institutes of Health (National Institute on Aging, National Institute of Neurological Disorders and Stroke; project numbers: 1ZIA‐NS003154‐03, Z01‐AG000949‐02, and Z01‐ES101986). In addition, this work was supported by the Department of Defense (award W81XWH‐09‐2‐0128), The Michael J Fox Foundation for Parkinson's Research, and the ISCIII Grants PI 15/0878 (Fondos Feder) to V.A. and PI 15/01013 to J,H. This study was supported by grants from the Spanish Ministry of Economy and Competitiveness (PI14/01823, PI16/01575, PI18/01898, [SAF2006‐10126 (2006‐2009), SAF2010‐22329‐C02‐01 (2010‐2012), and SAF2013‐47939‐R (2013‐2018)]), co‐founded by ISCIII (Subdirección General de Evaluación y Fomento de la Investigación) and by Fondo Europeo de Desarrollo Regional (FEDER), the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (CVI‐02526, CTS‐7685), the Consejería de Salud y Bienestar Social de la Junta de Andalucía (PI‐0437‐2012, PI‐0471‐2013), the Sociedad Andaluza de Neurología, the Jacques and Gloria Gossweiler Foundation, the Fundación Alicia Koplowitz, and the Fundación Mutua Madrileña. Pilar Gómez‐Garre was supported by the “Miguel Servet” (from ISCIII16 FEDER) and “Nicolás Monardes” (from Andalusian Ministry of Health) programmes. Silvia Jesús Maestre was supported by the “Juan Rodés” programme, and Daniel Macías‐García was supported by the “Río Hortega” programme (both from ISCIII‐FEDER). Cristina Tejera Parrado was supported by VPPI‐US from the Universidad de Sevilla. This research has been conducted using samples from the HUVR‐IBiS Biobank (Andalusian Public Health System Biobank and ISCIII‐Red de Biobancos PT13/0010/0056). This work was also supported by the grant PSI2014‐57643 from the Junta de Andalucía to the CTS‐438 group and a research award from the Andalusian Society of Neurology

    Moving beyond neurons:the role of cell type-specific gene regulation in Parkinson’s disease heritability

    No full text
    Abstract Parkinson’s disease (PD), with its characteristic loss of nigrostriatal dopaminergic neurons and deposition of α-synuclein in neurons, is often considered a neuronal disorder. However, in recent years substantial evidence has emerged to implicate glial cell types, such as astrocytes and microglia. In this study, we used stratified LD score regression and expression-weighted cell-type enrichment together with several brain-related and cell-type-specific genomic annotations to connect human genomic PD findings to specific brain cell types. We found that PD heritability attributable to common variation does not enrich in global and regional brain annotations or brain-related cell-type-specific annotations. Likewise, we found no enrichment of PD susceptibility genes in brain-related cell types. In contrast, we demonstrated a significant enrichment of PD heritability in a curated lysosomal gene set highly expressed in astrocytic, microglial, and oligodendrocyte subtypes, and in LoF-intolerant genes, which were found highly expressed in almost all tested cellular subtypes. Our results suggest that PD risk loci do not lie in specific cell types or individual brain regions, but rather in global cellular processes detectable across several cell types

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore