405 research outputs found

    Green dyeing of polyamide with increased anti-UV properties

    Get PDF
    [Excerpt] Introduction: During the last few decades, ecological concerns related to the use of the synthetic dyes, have led to a greater motivation for the development of processes that use natural products. This strategy has been applied to improve theincreasingly necessary sustainability of wet textile processes.Natural dyes are available in nature in different shadesandthey can be exploited for coloring textilesandto improveother properties such as UV protection and antimicrobial activity. Among them, those obtained from eucalyptus leaves, mainly composed by tannins (gallic acid and ellagic acid) and flavonoids (quercetin and rutin), appear to be interesting for textile finishing applications. The eucalyptus leaves, arean abundant, inexpensiveand readily available forestresidue.However, despite the recognized properties of this type of compound, its use in polyamide dyeing was not reported in our literature review.The present study aimed to develop dyed polyamide 6 knittedfabrics with increased UV protection using a naturaleucalyptus leavesextract. [...]Authorswishing to acknowledge the Project UID/CTM/00264/2019 of 2C2T –Centro de Ciência e Tecnologia Têxtil, funded by National Founds through FCT/MCTES

    The pointing gesture in 12 month old infants born pre-term

    Get PDF
    Universidade Federal de São Paulo, São Paulo, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilWeb of Scienc

    Biomaterials as Tendon and Ligament Substitutes: Current Developments

    Get PDF
    Tendon and ligament have specialized dynamic microenvironment characterized by a complex hierarchical extracellular matrix essential for tissue functionality, and responsible to be an instructive niche for resident cells. Among musculoskeletal diseases, tendon/ligament injuries often result in pain, substantial tissue morbidity, and disability, affecting athletes, active working people and elder population. This represents not only a major healthcare problem but it implies considerable social and economic hurdles. Current treatments are based on the replacement and/or augmentation of the damaged tissue with severe associated limitations. Thus, it is evident the clinical challenge and emergent need to recreate native tissue features and regenerate damaged tissues. In this context, the design and development of anisotropic bioengineered systems with potential to recapitulate the hierarchical architecture and organization of tendons and ligaments from nano to macro scale will be discussed in this chapter. Special attention will be given to the state-of-the-art fabrication techniques, namely spinning and electrochemical alignment techniques to address the demanding requirements for tendon substitutes, particularly concerning the importance of biomechanical and structural cues of these tissues. Moreover, the poor innate regeneration ability related to the low cellularity and vascularization of tendons and ligaments also anticipates the importance of cell based strategies, particularly on the stem cells role for the success of tissue engineered therapies. In summary, this chapter provides a general overview on tendon and ligaments physiology and current conventional treatments for injuries caused by trauma and/or disease. Moreover, this chapter presents tissue engineering approaches as an alternative to overcome the limitations of current therapies, focusing on the discussion about scaffolds design for tissue substitutes to meet the regenerative medicine challenges towards the functional restoration of damaged or degenerated tendon and ligament tissues.Portuguese Foundation for Science and Technology for the post-doctoral grant (SFRH/BPD/111729/2015) and for the projects Recognize (UTAP-ICDT/CTM-BIO/0023/2014) and POC I-01-0145-FEDER-007

    Molecular identification of cultivable bacteria from infected root canals associated with acute apical abscess

    Get PDF
    The objective of this study was to investigate the bacterial composition present in root canals of teeth associated with acute apical abscess by molecular identification (16S rRNA) of cultivable bacteria. Two hundred and twenty strains isolated by culture from 20 root canals were subjected to DNA extraction and amplification of the 16S rRNA gene (PCR), followed by sequencing. The resulting nucleotide sequences were compared to the GenBank database from the National Center of Biotechnology Information through BLAST. Strains not identified by sequencing were submitted to clonal analysis. The association of microbiological findings with clinical features and the association between microbial species were also investigated. Fifty-nine different cultivable bacteria were identified by 16S rRNA gene sequencing, belonging to 6 phyla, with an average number of 6 species per root canal. Molecular approaches allowed identification of 99% of isolates. The most frequently identified bacteria were Prevotella spp., Pseudoramibacter alactolyticus, Parvimonas micra, Dialister invisus, Filifactor alocis, and Peptostreptococcus stomatis. Positive association was found between Prevotella buccae and Pseudoramibacter alactolyticus and between Parvimonas micra and Prevotella nigrescens (both p<0.05). It was concluded that the microbiota of infected root canals associated with acute apical abscess is diverse and heterogeneous, composed mainly of anaerobic Gram-negative bacteria, with the great majority belonging to the phyla Firmicutes and Bacteroidetes273318324CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP302575/2009; 308162/2014-5Sem informação2009/07760-5; 2011/09047-4O objetivo deste estudo foi investigar a composição bacteriana de canais radiculares associados com abscesso apical agudo através de identificação molecular (16S rRNA) de bactérias cultiváveis. Duzentas e vinte cepas, de 20 casos, isoladas por cultura foram submetidas a extração de DNA e amplificação do gene 16S rRNA (PCR), seguido de sequenciamento. As sequências de nucleotídeos obtidas foram comparadas com o banco de dados (GenBank) do National Center of Biotechnology Information através do BLAST. Cepas não identificadas pelo sequenciamento foram submetidas à clonagem. Associação de achados microbiológicos e características clínicas e associação entre espécies bacterianas também foram investigadas. Cinquenta e nove bactérias cultiváveis diferentes foram identificadas pelo sequenciamento do gene 16S rRNA, pertencentes a 6 filos, numa média de 6 espécies por canal. Método molecular permitiu identificação de 99% das cepas isoladas. As bactérias mais frequentes foram Prevotella spp., Pseudoramibacter alactolyticus, Parvimonas micra, Dialister invisus, Filifactor alocis, Peptostreptococcus stomatis. Associação positiva foi encontrada entre Prevotella buccae e Pseudoramibacter alactolyticus, e entre Parvimonas micra e Prevotella nigrescens (p<0,05). Foi concluído que a microbiota de canais radiculares infectados associados com abscesso apical agudo é diversa e heterogênea, composta principalmente por anaeróbios Gram-negativos, pertencentes aos filos Firmicutes e Bacteroidete

    Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies

    Get PDF
    Statement of Purpose: An increase of scientific published literature and clinical experience supports the requirement of providing products like cultured cells and tissues to the market. One of the main prospects of cartilage tissue engineering is the possibility of developing custom-made regenerative medicine solutions on an individual patient basis. The efficient preservation and storage procedure will provide products available as needed which could be adapted to an autologous immediate solution. Thus, the aim of this study was to examine the effects of the cryopreservation on the chondrogenic differentiation characteristics of human mesenchymal stem cells isolated from adipose tissue (hASCs). Furthermore, we also propose to determine hASCs-hydrogel stability and confirm the potential of these bioengineered constructs to be applied in cartilage regeneration. The results obtained show that the hydrogels withstand the cryopreservation process maintaining their structural integrity, with good cell content after cryopreservation. Thus, cell encapsulation systems of natural based hydrogels may be an interesting approach for the long term preservation of cartilage tissue engineered products. Methods: The κ-carrageenan (κCR) hydrogels were produced using an ionotropic gelation method. Then, stem cells, namely human adipose derived stem cells (hASCs), were encapsulated in κCR discs (5 mm dia. x 3 mm height) at a density of 5x106 cell/cm3 and cultured for 21 days in standard basal (BM) or chondrogenic media (ChM). The cell hydrogels were cryopreserved in liquid nitrogen for up to 30 days. The overall morphology of κCR discs with encapsulated hASCs was observed under light microscope. hASCs viability and proliferation rate was determined by double stand DNA quantification. Additionally, chondrogenic differentiation of hASCs encapsulated in the hydrogels is being characterized by histological staining for selective cartilage staining and real time PCR analysis (Sox9, aggrecan, and collagen: type I, type II and type X). DMA analysis allowed determining the mechanical properties of κ-carrageenan hydrogels, namely storage (elastic) and loss (viscous) while immersed in wet state at 24 °C and throughout a physiological relevant range of frequencies. The described characterization assays were performed both before (BC) and after cryopreservation/freezing (AC) time points. Results: The cell morphology, distribution and appearance of the hydrogels are clearly observed from the microscopic light images (Figure 1A). It is possible to observe the smooth and homogeneous surface, the well defined and stable shape before and after the freezing process. Encapsulated hASCs were able to maintain cellular content, despite an expected decrease observed upon cryopreservation (Figure 1B), which is associated to a recovery time after thawing. The microscopic images and biological evaluation of κCR hydrogel revealed that the cryopreservation process did not change the cellular morphology; the surface and integrity of the hydrogel disc and enables maintenance of hASCs after exposure to low temperatures environments. Figure 1. (A) Representative optical micrographs of hASCs encapsulated in κCR hydrogels and cultured in ChM and BM before and after cryopreservation and (B) cell proliferation results, based on the quantification of dsDNA content. Scale bar represent 100 μm. Conclusions: The results obtained so far indicated the feasibility of hASCs-κCR system in cartilage tissue engineering regeneration strategies due to its ability to support hASCs viability before and after cryopreservation. Ongoing studies on the assessment of chondrogenic features of these cryopreserved systems will provide information on the effect of cryopreservation indicative of a stable chondrocyte phenotype. In summary, this study provided information on the potential of ASCs-hydrogel constructs for a long term storage and ready to use bioengineered tissue substitutes for cartilage regeneration strategies. References: (Popa EG. Biomacromolecules 2011;12:3952-3961

    Controlling Macrophage Polarization to Modulate Inflammatory Cues Using Immune-Switch Nanoparticles

    Get PDF
    The persistence of inflammatory mediators in tissue niches significantly impacts regenerative outcomes and contributes to chronic diseases. Interleukin-4 (IL4) boosts pro-healing phenotypes in macrophages (MÏ ) and triggers the activation of signal transducer and activator of transcription 6 (STAT6). Since the IL4/STAT6 pathway reduces MÏ responsiveness to inflammation in a targeted and precise manner, IL4 delivery offers personalized possibilities to overcome inflammatory events. Despite its therapeutic potential, the limited success of IL4-targeted delivery is hampered by inefficient vehicles. Magnetically assisted technologies offer precise and tunable nanodevices for the delivery of cytokines by combining contactless modulation, high tissue penetration, imaging features, and low interference with the biological environment. Although superparamagnetic iron oxide nanoparticles (SPION) have shown clinical applicability in imaging, SPION-based approaches have rarely been explored for targeted delivery and cell programming. Herein, we hypothesized that SPION-based carriers assist in efficient IL4 delivery to MÏ , favoring a pro-regenerative phenotype (M2Ï ). Our results confirmed the efficiency of SPION-IL4 and MÏ responsiveness to SPION-IL4 with evidence of STAT6-mediated polarization. SPION-IL4-treated MÏ showed increased expression of M2Ï associated-mediators (IL10, ARG1, CCL2, IL1Ra) when compared to the well-established soluble IL4. The ability of SPION-IL4 to direct MÏ polarization using sophisticated magnetic nanotools is valuable for resolving inflammation and assisting innovative strategies for chronic inflammatory conditions.This research was funded by the European Research Council, Consolidator Grant Magtendon, grant number 772817. FCT-Fundação para a Ciência e a Tecnologia, grant number SFDH/BD/144816/2019. FCT-Fundação para a Ciência e a Tecnologia under the Scientific Employment Stimulus—Individual Call: 2020.01157.CEECIND

    Development of new chitosan/carrageenan nanoparticles for drug delivery applications

    Get PDF
    The use of polymeric nanoparticles, especially those composed of natural polymers, has become a very interesting approach in drug delivery., mainly because of the advantages offered by their small dimensions. The aim of this work was to develop a novel formulation of nanoparticles comprised of two natural marine-derived polymers, namely chitosan and carrageenan, and to evaluate their potential for the association and controlled release of macromolecules. Nanoparticles were obtained in a hydrophilic environment, under very mild conditions, avoiding the use of organic solvents or other aggressive technologies for their preparation. The developed nanocarriers presented sizes within 350-650 run and positive zeta potentials of 50-60 mV. Polymeric interactions between nanoparticles' components were evaluated by Fourier transform infrared spectroscopy. Using ovalbumin as model protein, nanoparticles evidenced loading capacity varying from 4% to 17%, and demonstrated excellent capacity to provide a controlled release for up to 3 weeks. Furthermore, nanoparticles have demonstrated to exhibit a noncytotoxic behavior in biological in vitro tests performed using L929 fibroblasts, which is critical regarding the biocompatibility of those carriers. In summary, the developed chitosan-carrageenan nanoparticles have shown promising properties to be used as carriers of therapeutic macromolecules, with potential application not only strictly in drug delivery, but also in broader areas, such as tissue engineering and regenerative medicine. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 92A: 1265-1272, 2010Contract grant sponsor: Portuguese Foundation for Science and Technology (FCT) (POCTI/FEDER programmes)Contract grant sponsor: European Union STREP Project HIPPOCRATES; contract grant number: NMP3-CT-2003505758Contract grant sponsor: European NoE EXPERTISSUES; contract grant number: NMP3-CT-2004-50028

    Qualidade de Conteúdos no Audiovisual Televisivo

    Get PDF
    Neste artigo são apresentados alguns dos aspectos norteadores do projeto de pesquisa "Control de Calidad de los Contenidos Audiovisuales", que tem como objetivo propor um protocolo de medição de qualidade a partir dos conteúdos de produtos audiovisuais televisivos. A discussão sobre a medição da qualidade é aqui proposta desde a participação da audiência na avaliação do que consome, com base nos valores humanos, sociais e educativos presentes nos programas. Em lugar de focar sobre a quantidade de audiência como fator medidor, aqui se acentua a percepção da audiência com relação à qualidade dos conteúdos oferecidos, como base na avaliação da produção televisiva

    Novel genipin cross-linked chitosan-silk fibroin sponges for cartilage engineering strategies

    Get PDF
    The positive interaction of materials with tissues is an important step in regenerative medicine strategies. Hydrogels that are obtained from polysaccharides and proteins are expected to mimic the natural cartilage environment and thus provide an optimum milleu for tissue growth and regeneration. In this work, novel hydrogels composed of blends of chitosan and Bombyx mori silk fibroin were cross-linked with genipin (G) and were freeze dried to obtain chitosan/silk (CSG) sponges. CSG sponges possess stable and ordered structures because of protein conformational changes from R-helix/random-coil to -sheet structure, distinct surface morphologies, and pH/ swelling dependence at pH 3, 7.4, and 9. We investigated the cytotoxicity of CSG sponge extracts by using L929 fibroblast-like cells. Furthermore, we cultured ATDC5 cells onto the sponges to evaluate the CSG sponges’ potential in cartilage repair strategies. These novel sponges promoted adhesion, proliferation, and matrix production of chondrocyte-like cells. Sponges’ intrinsic properties and biological results suggest that CSG sponges may be potential candidates for cartilage tissue engineering (TE) strategies.S.S.S. and M.T.R. thank the Portuguese Foundation for Science and Technology (FCT) for Ph.D. scholarships (SFRH/BD/8658/2002 and SFRH/BD/30745/2006, respectively). A.F.M.P. thanks the FCT and FEDER for a grant (POCI/FIS/61621/2004). This work was partially supported by the European-Union-funded STREP project HIPPOCRATES (NMP3-CT-2003-505758) and was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283). We also acknowledge Adriano Pedro for his contribution to the micro-CT analysis

    T-box transcription factor Brachyury is associated with prostate cancer progression and aggressiveness

    Get PDF
    Purpose: Successful therapy of patients with prostate cancer is highly dependent on reliable diagnostic and prognostic biomarkers. Brachyury is considered a negative prognostic factor in colon and lung cancer; however, there are no reports on Brachyury’s expression in prostate cancer. Experimental Design: In this study, we aimed to assess the impact of Brachyury expression in prostate tumorigenesis using a large series of human prostate samples comprising benign tissue, prostate intraepithelial neoplasia (PIN) lesions, localized tumor, and metastatic tissues. The results obtained were compared with what can be inferred from the Oncomine database. In addition, multiple in vitro models of prostate cancer were used to dissect the biologic role of Brachyury in prostate cancer progression. Results: We found that Brachyury is significantly overexpressed in prostate cancer and metastatic tumors when compared with normal tissues, both at protein and at mRNA levels. Brachyury expression in the cytoplasm correlates with highly aggressive tumors, whereas the presence of Brachyury in the nucleus is correlated with tumor invasion. We found that Brachyury-positive cells present higher viability, proliferation, migration, and invasion rates than Brachyury-negative cells. Microarray analysis further showed that genes co-expressed with Brachyury are clustered in oncogenic-related pathways, namely cell motility, cellcycle regulation, and cell metabolism. Conclusions: Collectively, the present study suggests that Brachyury plays an important role in prostate cancer aggressiveness and points, for the first time, to Brachyury as a significant predictor of poor prostate cancer prognosis. Our work paves the way for future studies assessing Brachyury as a possible prostate cancer therapeutic target.This study was supported by the ICVS internal research funds of participating authors and by the FCT project, ref. PTDC/SAU-MET113415/2009. F. Pinto and N. Pertega-Gomes received fellowships from the FCT, ref. SFRH/BD/81369/2011 and SFRH/BD/61027/2009, respectively. R. P. Andrade was funded by Ciencia2007 Program Contract and Programa Operacional Regional do Norte (ON. 2) - NORTE-07-0124-FEDER-000017
    corecore