20 research outputs found

    Prevalence of Avian Pathogenic Escherichia coli (APEC) Clone Harboring sfa Gene in Brazil

    Get PDF
    Escherichia coli sfa+ strains isolated from poultry were serotyped and characterized by polymerase chain reaction (PCR) and amplified fragment length polymorphism (AFLP). Isolates collected from 12 Brazilian poultry farms mostly belonged to serogroup O6, followed by serogroups O2, O8, O21, O46, O78, O88, O106, O111, and O143. Virulence genes associated were: iuc 90%, fim 86% neuS 60%, hly 34%, tsh 28%, crl/csg 26%, iss 26%, pap 18%, and 14% cnf. Strains from the same farm presented more than one genotypic pattern belonging to different profiles in AFLP. AFLP showed a clonal relation between Escherichia coli sfa+ serogroup O6. The virulence genes found in these strains reveal some similarity with extraintestinal E. coli (ExPEC), thus alerting for potential zoonotic risk

    The Flagella of an Atypical Enteropathogenic Escherichia coli Strain Are Required for Efficient Interaction with and Stimulation of Interleukin-8 Production by Enterocytes in Vitro

    Get PDF
    The ability of some typical enteropathogenic Escherichia coli (EPEC) strains to adhere to, invade, and increase interleukin-8 (IL-8) production in intestinal epithelial cells in vitro has been demonstrated. However, few studies regarding these aspects have been performed with atypical EPEC (aEPEC) strains, which are emerging enteropathogens in Brazil. in this study, we evaluated a selected aEPEC strain (1711-4) of serotype O51:H40, the most prevalent aEPEC serotype in Brazil, in regard to its ability to adhere to and invade Caco-2 and T84 cells and to elicit IL-8 production in Caco-2 cells. the role of flagella in aEPEC 1711-4 adhesion, invasion, and IL-8 production was investigated by performing the same experiments with an isogenic aEPEC mutant unable to produce flagellin (FliC), the flagellum protein subunit. We demonstrated that this mutant (fliC mutant) had a marked decrease in the ability to adhere to T84 cells and invade both T84 and Caco-2 cells in gentamicin protection assays and by transmission electron microscopy. in addition, the aEPEC 1711-4 fliC mutant had a reduced ability to stimulate IL-8 production by Caco-2 cells in early (3-h) but not in late (24-h) infections. Our findings demonstrate that flagella of aEPEC 1711-4 are required for efficient adhesion, invasion, and early but not late IL-8 production in intestinal epithelial cells in vitro.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Colegio Doutoral Franco BrasileiroInstitut PasteurFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Programa de Apoio a Nucleos de ExcelenciaPRONEXConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilInst Pasteur, Unite Pathogenie Bacterienne Muqueuses, F-75724 Paris 15, FranceInst Butantan, Bacteriol Lab, BR-05503900 São Paulo, BrazilInst Fleury Ensino & Pesquisa, BR-04344903 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilInstitut Pasteur: PTR165FAPESP: 05/59128-0Web of Scienc

    Characterization of Atypical Enteropathogenic Escherichia coli Strains That Express Typical Localized Adherence in HeLa Cells in the Absence of the Bundle-Forming Pilus

    Get PDF
    The characterization of nine atypical enteropathogenic Escherichia coli strains expressing localized adherence in HeLa cells in the absence of the bundle-forming pilus revealed a diversity of serotypes, plasmids, and virulence genes. Although the strains lacked known E. coli adhesin genes, the identification of new adhesins could contribute to the characterization of similar enteropathogenic E. coli isolates

    Expression of aggregative adherence to hela cells by Escherichia coli strains isolated from sick horses

    No full text
    The virulence attributes of 56 Escherichia coli strains isolated from sick horses (secretions of uterine cervices; gastrointestinal and lung fragments of necropsy; diarrheic feces, and tracheal washings) was examined by determining their adherence pattern to HeLa cells and searching for the presence of virulence genes of the various E. coli pathotypes. Two non-adherent strains presented astA, which encodes the enteroaggregative E. coli heat-stable toxin. Twenty-seven strains (48.2%) adhered to HeLa cells, 21 (77.8%) of which presented the aggregative adherence pattern (AA) that characterize the Enteroaggregative E. coli pathotype (EAEC). Nine of the strains presenting AA were isolated from secretions of uterine cervix, including one carrying virulence genes of the EAEC pathotype (aggR,aap,irp2, and pic). This is the first description of the AA phenotype amongst E. coli strains from sick horses. Such strains should be further evaluated regarding their potential role in the pathogenesis of diverse equine diseases and as reservoirs of human infections

    Genome sequencing of an XDR Klebsiella pneumoniae ST101 strain isolated from a Brazilian Amazon river

    No full text
    Objective: : Herein, this study aimed to perform the genomic characterization of a blaKPC-2 positive Klebsiella pneumoniae (KP1.1JP) strain isolated from the surface water of river located the Brazilian Amazon region. Methods: : Antimicrobial susceptibility testing was performed following BrCAST/EUCAST recommendations. Genomic DNA was extracted and sequenced using the Illumina® NextSeq platform and the assembly of the generated reads was performed using the SPAdes software. Research on the sequence type, resistance and virulence encoding genes, and plasmid replicon typing was carried out. Results: : The KP1.1JP strain was resistant to all β-lactams, aminoglycosides, and fluoroquinolones tested. The genome size was 5 626 346 bp, distributed in 203 contigs and a guanine and cytosine content of 57.02%. The values of N50 and N75 were 285 583 bp and 173 927 bp, respectively. We verified that KP1.1JP belongs to ST101 and carries genes encoding resistance to β-lactams (blaCTX-M-15, blaTEM-1B, blaOXA-1, blaSVH-182, and blaKPC-2), aminoglycosides [aac(3′)-IIa, aph(3′)-Vla], fluoroquinolones [aac(6′)-Ib-cr], phenicol (catA1, catA2, catB3), tetracycline [tet(D)], trimethoprim (dfrA14), and fosfomycin (fosA). Additionally, the following virulence encoding genes were also detected: mrkABCDFHIJ (Fimbria type 3); fimABCDRFGHIK (Fimbria type 1); entABCDEFS and fepABCDG (siderophores); iroN, irp1, and irp2 (salmochelins); fyuA and ybtAEPQSTUX (yersiniabactin); and iutA (aerobactin). Conclusions: : We report the occurrence of a K. pneumoniae ST101 strain carrying blaKPC-2 gene in an Amazon river in Brazil. The genomic characteristics of this strain will contribute to a better understanding of the spread of pathogens of clinical importance in the environment based on a One Health perspective
    corecore