103 research outputs found

    Elastic Scattering and Total Reaction Cross Section for the 6He + 27Al System

    Get PDF
    The elastic scattering of the radioactive halo nucleus 6He on 27Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential(SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6He on 27Al are similar to those for stable, weakly bound projectiles as {6,7}Li, 9Be and larger than stable, tightly bound projectile as 16O on 27Al.Comment: 7 pages, 1 table, 3 figure

    Sub- and above barrier fusion of loosely bound 6^6Li with 28^{28}Si

    Full text link
    Fusion excitation functions are measured for the system 6^6Li+28^{28}Si using the characteristic γ\gamma-ray method, encompassing both the sub-barrier and above barrier regions, viz., ElabE_{lab}= 7-24 MeV. Two separate experiments were performed, one for the above barrier region (ElabE_{lab}= 11-24 MeV) and another for the below barrier region (ElabE_{lab}= 7-10 MeV). The results were compared with our previously measured fusion cross section for the 7^7Li+28^{28}Si system. We observed enhancement of fusion cross section at sub-barrier regions for both 6^6Li and 7^7Li, but yield was substantially larger for 6^6Li. However, for well above barrier regions, similar type of suppression was identified for both the systems.Comment: 8 pages, 6 figures, as accepted for publication in Eur.Phys.J.

    No evidence of break-up effects on the fusion of 9Be with medium-light nuclei

    Get PDF
    AbstractFusion cross sections were measured for the 9Be+27Al and 19F+9Be, 12C systems, at energies above the Coulomb barrier, in order to investigate the possible effect of fusion hindrance due to the break-up of the weakly bound nuclei. Comparisons with one-dimensional barrier penetration models and with other similar systems, where no break-up is expected to occur, show no evidence of fusion hindrance

    Projectile breakup dynamics for 6^{6}Li + 59^{59}Co: kinematical analysis of α\alpha-dd coincidences

    Full text link
    A study of the kinematics of the α\alpha-dd coincidences in the 6^{6}Li + 59^{59}Co system at a bombarding energy of Elab=29.6E_{lab} = 29.6 MeV is presented. With exclusive measurements performed over different angular intervals it is possible to identify the respective contributions of the sequential projectile breakup and direct projectile breakup components. A careful analysis using a semiclassical approach of these processes provides information on both their lifetime and their distance of occurrence with respect to the target. Breakup to the low-lying (near-threshold) continuum is delayed, and happens at large internuclear distances. This suggests that the influence of the projectile breakup on the complete fusion process can be related essentially to direct breakup to the 6^6Li high-lying continuum spectrum. %Comment: Revised version including new Fig.3 and Fig.4 with new CDCC calculations. Accepted for publication at Eur. Phys. Jour. A. 11 pages, 6 figure
    corecore