7 research outputs found

    Displasia do desenvolvimento do quadril, relação entre via de parto e impacto no tempo de tratamento: dysplasia of hip development, relationship between way of living and impact on time of treatment

    Get PDF
    Como uma das anomalias esqueléticas mais frequentes, a displasia do desenvolvimento do quadril (DDQ) é caracterizada por uma gama considerável de patologia, desde a frouxidão menor dos ligamentos na articulação do quadril até a luxação completa. Acredita-se que a detecção precoce e o tratamento subsequente da displasia do desenvolvimento do quadril (DDQ) melhorem seu prognóstico. Os fatores de risco frequentemente relatados para DDQ são história familiar positiva de DDQ, sexo feminino e apresentação pélvica, mas não há muito conhecimento sistemático sobre os fatores de risco, tempo de tratamento para DDQ com relação a via de parto. O objetivo deste estudo é verificar na literatura as possíveis relações entre DDQ e as via de parto, bem como sua influência no tempo de tratamento desses pacientes. Trata-se de uma revisão como bases publicações, dos último cinco anos, que abordem a relação entre via de parto e o tempo de tratamento da DDQ, extraídas de bases de dados eletrônicas como Scielo, PubMed, Lilacs, BVS, Embase e Medline, em língua inglesa e portuguesa. Dos estudo que se aproximaram do objetivo da pesquisa, muitos não relataram a estreita relação entre via de parto e tratamento da DDQ e aqueles que de alguma forma relataram, alegaram não haver uma relação direta entre as variáveis, pois a DDQ é multifatorial. Assim, espera-se que este estudo sirva de incentivo para que mais estudos sejam realizados sobre essa temática afim de estabelecer e conhecer se há alguma relação entre via de parto e tempo de tratamento de pacientes com DDQ

    Spatial Evaluation and Modeling of Dengue Seroprevalence and Vector Density in Rio de Janeiro, Brazil

    Get PDF
    Dengue is a major public health problem in many tropical regions of the world, including Brazil, where Aedes aegypti is the main vector. We present a household study that combines data on dengue fever seroprevalence, recent dengue infection, and vector density, in three neighborhoods of Rio de Janeiro, Brazil, during its most devastating dengue epidemic to date. This integrated entomological–serological survey showed evidence of silent transmission even during a severe epidemic. Also, past exposure to dengue virus was highly associated with age and living in areas of high movement of individuals and social/commercial activity. No association was observed between household infestation index and risk of dengue infection in these areas. Our findings are discussed in the light of current theories regarding transmission thresholds and relative role of mosquitoes and humans as vectors of dengue viruses

    Howler monkeys are the reservoir of malarial parasites causing zoonotic infections in the Atlantic forest of Rio de Janeiro.

    No full text
    BACKGROUND:Although malaria cases have substantially decreased in Southeast Brazil, a significant increase in the number of Plasmodium vivax-like autochthonous human cases has been reported in remote areas of the Atlantic Forest in the past few decades in Rio de Janeiro (RJ) state, including an outbreak during 2015-2016. The singular clinical and epidemiological aspects in several human cases, and collectively with molecular and genetic data, revealed that they were due to the non-human primate (NHP) parasite Plasmodium simium; however, the understanding of the autochthonous malarial epidemiology in Southeast Brazil can only be acquired by assessing the circulation of NHP Plasmodium in the foci and determining its hosts. METHODOLOGY:A large sampling effort was carried out in the Atlantic forest of RJ and its bordering states (Minas Gerais, São Paulo, Espírito Santo) for collecting and examining free-living NHPs. Blood and/or viscera were analyzed for Plasmodium infections via molecular and microscopic techniques. PRINCIPAL FINDINGS:In total, 146 NHPs of six species, from 30 counties in four states, were tested, of which majority were collected from RJ. Howler monkeys (Alouatta clamitans) were the only species found infected. In RJ, 26% of these monkeys tested positive, of which 17% were found to be infected with P. simium. Importantly, specific single nucleotide polymorphisms-the only available genetic markers that differentiate P. simium from P. vivax-were detected in all P. simium infected A. clamitans despite their geographical origin of malarial foci. Interestingly, 71% of P. simium infected NHPs were from the coastal slope of a mountain chain (Serra do Mar), where majority of the human cases were found. Plasmodium brasilianum/malariae was initially detected in 14% and 25% free-living howler monkeys in RJ and in the Espírito Santo (ES) state, respectively. Moreover, the malarial pigment was detected in the spleen fragments of 50% of a subsample comprising dead howler monkeys in both RJ and ES. All NHPs were negative for Plasmodium falciparum. CONCLUSIONS/SIGNIFICANCE:Our data indicate that howler monkeys act as the main reservoir for the Atlantic forest human malarial parasites in RJ and other sites in Southeast Brazil and reinforce its zoonotic characteristics

    Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016-2018

    Get PDF
    Submitted by Sandra Infurna ([email protected]) on 2019-05-02T11:21:12Z No. of bitstreams: 1 FilipeVS_Abreu_RicardoLOliveira_etal_IOC_2019.pdf: 2702570 bytes, checksum: bd3c61c9aca178ef21e167e4a3668cbb (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2019-05-02T11:39:48Z (GMT) No. of bitstreams: 1 FilipeVS_Abreu_RicardoLOliveira_etal_IOC_2019.pdf: 2702570 bytes, checksum: bd3c61c9aca178ef21e167e4a3668cbb (MD5)Made available in DSpace on 2019-05-02T11:39:48Z (GMT). No. of bitstreams: 1 FilipeVS_Abreu_RicardoLOliveira_etal_IOC_2019.pdf: 2702570 bytes, checksum: bd3c61c9aca178ef21e167e4a3668cbb (MD5) Previous issue date: 2019Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil / Instituto Federal do Norte de Minas Gerais. Salinas, MG, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.MIVEGEC Laboratory. IRD-CNRS Université de Montpellier, Montpellier, France.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Secretaria de Saúde do Estado do Rio de Janeiro. Gerência de Estudos e Pesquisas em Antropozoonoses. Rio de Janeiro, RJ, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Coordenação Geral de Vigilância das Doenças Transmissíveis. Brasília, DF, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Saúde Ambiental e Saúde do Trabalhador. Brasília, DF, Brasil.Subsecretaria de Vigilância e Proteção à Saúde de Minas Gerais. Belo Horizonte, MG, Brasil.Secretaria de Saúde do Estado do Rio de Janeiro. Superintendência de Vigilância Epidemiológica e Ambiental. Rio de Janeiro, RJ, Brasil.Secretaria Estadual de Saúde do Espírito Santo. Núcleo Especial de Vigilância Ambiental. Vitória, ES, Brasil.Secretaria de Saúde do Estado da Bahia. Salvador, Bahia, Brasil.Universidade Federal do Espírito Santo. Vitória, ES, Brasil.MIVEGEC Laboratory. IRD-CNRS Université de Montpellier, Montpellier, France.Institut Pasteur. Arboviruses and Insect Vectors. Paris, France.UMR BIPAR. Animal Health Laboratory. ANSES. INRA. Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Mosquitos Transmissores de Hematozoários. Rio de Janeiro, RJ. Brasil.The yellow fever virus (YFV) caused a severe outbreak in Brazil in 2016-2018 that rapidly spread across the Atlantic Forest in its most populated region without viral circulation for almost 80 years. A comprehensive entomological survey combining analysis of distribution, abundance and YFV natural infection in mosquitoes captured before and during the outbreak was conducted in 44 municipalities of five Brazilian states. In total, 17,662 mosquitoes of 89 species were collected. Before evidence of virus circulation, mosquitoes were tested negative but traditional vectors were alarmingly detected in 82% of municipalities, revealing high receptivity to sylvatic transmission. During the outbreak, five species were found positive in 42% of municipalities. Haemagogus janthinomys and Hg. leucocelaenus are considered the primary vectors due to their large distribution combined with high abundance and natural infection rates, concurring together for the rapid spread and severity of this outbreak. Aedes taeniorhynchus was found infected for the first time, but like Sabethes chloropterus and Aedes scapularis, it appears to have a potential local or secondary role because of their low abundance, distribution and infection rates. There was no evidence of YFV transmission by Aedes albopictus and Aedes aegypti, although the former was the most widespread species across affected municipalities, presenting an important overlap between the niches of the sylvatic vectors and the anthropic ones. The definition of receptive areas, expansion of vaccination in the most affected age group and exposed populations and the adoption of universal vaccination to the entire Brazilian population need to be urgently implemented

    Survey on Non-Human Primates and Mosquitoes Does not Provide Evidences of Spillover/Spillback between the Urban and Sylvatic Cycles of Yellow Fever and Zika Viruses Following Severe Outbreaks in Southeast Brazil

    No full text
    International audienceIn the last decade, Flaviviruses such as yellow fever (YFV) and Zika (ZIKV) have expanded their transmission areas. These viruses originated in Africa, where they exhibit both sylvatic and interhuman transmission cycles. In Brazil, the risk of YFV urbanization has grown, with the sylvatic transmission approaching the most densely populated metropolis, while concern about ZIKV spillback to a sylvatic cycle has risen. To investigate these health threats, we carried out extensive collections and arbovirus screening of 144 free-living, non-human primates (NHPs) and 5219 mosquitoes before, during, and after ZIKV and YFV outbreaks (2015–2018) in southeast Brazil. ZIKV infection was not detected in any NHP collected at any time. In contrast, current and previous YFV infections were detected in NHPs sampled between 2017 and 2018, but not before the onset of the YFV outbreak. Mosquito pools screened by high-throughput PCR were positive for YFV when captured in the wild and during the YFV outbreak, but were negative for 94 other arboviruses, including ZIKV, regardless of the time of collection. In conclusion, there was no evidence of YFV transmission in coastal southeast Brazil before the current outbreak, nor the spread or establishment of an independent sylvatic cycle of ZIKV or urban Aedes aegypti transmission of YFV in the region. In view of the region’s receptivity and vulnerability to arbovirus transmission, surveillance of NHPs and mosquitoes should be strengthened and continuous
    corecore