299 research outputs found

    Dark Energy with a Little Help from its Friends

    Full text link
    We analyse theories that do not have a de Sitter vacuum and cannot lead to slow-roll quintessence, but which nevertheless support a transient era of accelerated cosmological expansion due to interactions between a scalar ϕ\phi and either a hidden sector thermal bath, which evolves as Dark Radiation, or an extremely-light component of Dark Matter. We show that simple models can explain the present-day Dark Energy of the Universe consistently with current observations. This is possible both when ϕ\phi's potential has a hilltop form and when it has a steep exponential run-away, as might naturally arise from string theory. We also discuss a related theory of multi-field quintessence, in which ϕ\phi is coupled to a sector that sources a subdominant component of Dark Energy, which overcomes many of the challenges of slow-roll quintessence.Comment: 30 pages + appendices (two columns), 9 figure

    Photocatalysis and smart asphalt mixtures

    Get PDF
    The application of photocatalytic semiconductors into asphalt mixtures give it better performance an new capabilities such as photocatalytic, superhydrophobic, self-cleaning, deicing/anti-ice, self-healing, thermochromic, and latent heat thermal energy storage

    The influence of structure and surface chemistry of carbon materials on the decomposition of hydrogen peroxide

    Get PDF
    Carbon materials with different structural and chemical properties, namely activated carbons, carbon xerogels, carbon nanotubes, graphene oxide, graphite and glycerol-based carbon materials, were tested under different operating conditions for their ability to catalyse hydrogen peroxide (H2O2) decomposition in aqueous solutions. Activated carbons treated with concentrated sulphuric acid (ACS) are the most active catalytic materials for H2O2 decomposition in most of the conditions studied, due to the presence of sulphur containing functional groups at their surface. In addition, ACS proved to be a stable catalyst in reutilization tests for H2O2 decomposition. Methanol was used as selective scavenger of hydroxyl radicals (HO center dot), to show that activated carbons with a markedly basic character lead to the highest yield of HO center dot formed during the H2O2 decomposition process (14%, after 150 min of reaction). Overall, from the mechanistic interpretation of H2O2 decomposition, it is concluded that the presence of sulphur containing functional groups at the surface of the activated carbons improves the removal of H2O2 in aqueous solutions, but, on the other hand, the selective decomposition of H2O2 via HO center dot formation is enhanced by the presence of basic active sites on the Carbon surface

    CavBench: a benchmark for protein cavity detection methods

    Get PDF
    Extensive research has been applied to discover new techniques and methods to model protein-ligand interactions. In particular, considerable efforts focused on identifying candidate binding sites, which quite often are active sites that correspond to protein pockets or cavities. Thus, these cavities play an important role in molecular docking. However, there is no established benchmark to assess the accuracy of new cavity detection methods. In practice, each new technique is evaluated using a small set of proteins with known binding sites as ground-truth. However, studies supported by large datasets of known cavities and/or binding sites and statistical classification (i.e., false positives, false negatives, true positives, and true negatives) would yield much stronger and reliable assessments. To this end, we propose CavBench, a generic and extensible benchmark to compare different cavity detection methods relative to diverse ground truth datasets (e.g., PDBsum) using statistical classification methods.info:eu-repo/semantics/publishedVersio

    Influence of the hip joint modeling approaches on the kinematics of human gait

    Get PDF
    The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when the different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intra-joint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system’s response tends to be smoother due to the damping effects of the synovial fluid.The first and third authors express their gratitude to the Portuguese Foundation for Science and Technology for the PhD grants SFRH/BD/76573/2011 and SFRH/BD/64477/2009, respectively. The authors would like to thank to the Portuguese Foundation for Science and Technology through the project UID/EEA/04436/2013. The authors are also gratefully acknowledge the financial support from QREN (Quadro de Referência Estratégico Nacional - National Strategic Reference Framework), for this study “INOVSHOES - Padronizar para Customizar Calçado Ortopédico”, project n.º 2010/12032

    Development of capacitive-type sensors by electrochemical anodization: Humidity and touch sensing applications

    Get PDF
    This work describes the development of a capacitive-type sensor created from nanoporous anodic aluminium oxide (NP-AAO) prepared by the one-step anodization method conducted in potentiostatic mode and performed in a low-cost homemade system. A series of samples were prepared via an anodization campaign carried out on different acid electrolytes, in which the anodization parameters were adjusted to investigate the effect of pore size and porosity on the capacitive sensing performance. Two sensor test cases are investigated. The first case explores the use of highly uniform NP-AAO structures for humidity sensing applications while the second analyses the use of NP-AAO as a capacitive touch sensor for biological applications, namely, to detect the presence of small "objects " such as bacterial colonies of Escherichia Coli. A mathematical model based on equivalent electrical circuits was developed to evaluate the effect of humidity condensation (inside the pores) on the sensor capacitance and also to estimate the capacitance change of the sensor due to pore blocking by the presence of a certain number of bacterial microorganisms. Regarding the humidity sensing test cases, it was found that the sensitivity of the sensor fabricated in a phosphoric acid solution reaches up to 39 (pF/RH%), which is almost three times higher than the sensor fabricated in oxalic acid and about eight times higher than the sensor fabricated in sulfuric acid. Its improved sensitivity is explained in terms of the pore size effect on the mean free path and the loss of Brownian energy of the water vapour molecules. Concerning the touch sensing test case, it is demonstrated that the NP-AAO structures can be used as capacitive touch sensors because the magnitude of the capacitance change directly depends on the number of bacteria that cover the nanopores; the fraction of the electrode area activated by bacterial pore blocking is about 4.4% and 30.2% for B1 (E. Coli OD600nm = 0.1) and B2 (E. Coli OD600nm = 1) sensors, respectively.This research was funded by: the Portuguese Foundation for Science and Technology (FCT) under the strategic funding grants UIDB/04029/2020, UIDB/04650/2020 and UIDB/04469/2020 units; and, the European Regional Development Fund under the scope of Norte2020 program grant NORTE-01-0145-FEDER-000004, BioTecNorte

    Of adenosine and the blues: the adenosinergic system in the pathophysiology and treatment of major depressive disorder

    Get PDF
    © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.This work was supported by project funding from Fundação para a Ciência e para a Tecnologia (FCT) to SHV (PTDC/BTM-SAL/32147/2017) and AMS (PTDC/MED-FAR/30933/2017). This project has received funding from H2020-WIDESPREAD-05-2017-Twinning (EpiEpinet) under grant agreement No. 952455. MF-F (SFRH/BD/147505/2019), JG-R (PD/BD/150342/2019), and NR (PD/BD/113463/2015) are supported by PhD fellowships from FCT.info:eu-repo/semantics/publishedVersio

    Evaluation of band gap energy of TiO2 precipitated from titanium sulphate

    Get PDF
    The determination of the band gap energy () of semiconductors powder materials can be performed from diffuse reflectance spectroscopy (DRS) measurements. For this purpose, the classical theory proposed by Kubelka and Munk (K-M) and the so-called plot Tauc, both discussed here, have been largely employed. We investigate the values of anatase TiO2 particles synthesized by precipitation of titanyl sulphate in the presence of 5% ammonia solution and titanium and iron salts. Based on K-M function and Tauc plot and considering that the TiO2 anatase phase is an indirect band gap semiconductor, our results indicate that the samples subjected to a mechanochemical treatment (mill rotation speed equal to 300 rpm) present substantially lower values compared to those reported by other authors in a recent work(undefined

    Deposição atmosférica de poeira e níveis de elementos traço numa cidade industrial com clima mediterrânico

    Get PDF
    This study was performed to examine the influence of an industrial complex, and the high traffic volume associated with it, on the atmospheric dust deposition in a Mediterranean setting. The most frequently used device for collecting total atmospheric wet and dry deposition consists of a funnel connected to a receiving bottle. Two deposition collectors were placed in exterior areas of two schools (Escola Básica Visconde de Salreu and Escola Secundária de Estarreja) located a few km south from the industrial complex of Estarreja. Sample collection was performed from May 2018 to September 2018 on a monthly basis. Soluble untreated samples were analysed for electrical conductivity and anions by ion chromatography.The pseudo-total trace elements content in soluble and insoluble fractions of atmospheric dust deposition were determined by inductively coupled plasma - mass spectrometry (ICPMS). The results obtained suggest similar temporal variation patterns for the deposition flux of soluble copper and zinc and a distinct variation pattern for the atmospheric deposition of insoluble zinc.Este estudo foi realizado para examinar a influência de um complexo industrial, e o elevado volume de tráfego associado, na deposição de poeira atmosférica numa cidade com clima mediterrâneo. O dispositivo comumente utilizado para recolher a deposição atmosférica total consiste num sistema composto por um funil ligado a uma garrafa coletora. Dois sistemas foram colocados nas áreas exteriores de duas escolas (Escola Básica Visconde de Salreu e Escola Secundária de Estarreja) localizadas poucos quilómetros a sul do complexo industrial de Estarreja. A recolha de amostras foi realizada mensalmente de maio de 2018 a setembro de 2018. Nas amostras solúveis não tratadas foi determinada a condutividade elétrica bem como a concentração de alguns aniões por cromatografia iónica. O teor de elementos traço nas frações solúvel e insolúvel da deposição atmosférica de poeiras foi determinado por ICP-MS. Os resultados sugerem padrões de variação temporal semelhantes para o fluxo de deposição de cobre e zinco solúvel, e um padrão de variação distinto para fluxo de deposição do zinco insolúvel.publishe
    corecore