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Abstract

Extensive research has been applied to discover new techniques and methods to model

protein-ligand interactions. In particular, considerable efforts focused on identifying candi-

date binding sites, which quite often are active sites that correspond to protein pockets or

cavities. Thus, these cavities play an important role in molecular docking. However, there is

no established benchmark to assess the accuracy of new cavity detection methods. In prac-

tice, each new technique is evaluated using a small set of proteins with known binding sites

as ground-truth. However, studies supported by large datasets of known cavities and/or

binding sites and statistical classification (i.e., false positives, false negatives, true positives,

and true negatives) would yield much stronger and reliable assessments. To this end, we

propose CavBench, a generic and extensible benchmark to compare different cavity detec-

tion methods relative to diverse ground truth datasets (e.g., PDBsum) using statistical clas-

sification methods.

Introduction

Modeling protein-ligand interactions is crucial to drug discovery and design, as well as to

understand bio-molecular structures. While extensive efforts have been applied for many years

into discovering new methods to model protein-ligand interactions, a comprehensive mecha-

nism to compare and assess such methods (and algorithms) is still lacking. This makes it diffi-

cult to properly ascertain the contributions of each method in the context of the myriad of

approaches developed over the past decades.

In the present work, we are particularly interested in benchmarking protein cavity (or

pocket) detection methods against one or more databases of cavities (e.g., PDBsum [1, 2]) or

even databases of already-known binding sites (e.g., scPDB [3]). Often, these already-known

protein binding sites correspond to protein cavities, so they may also work as ground-truth

cavities. This explains why detecting pockets/cavities on protein surfaces is an important first

step toward identifying protein binding sites for small molecules or ligands [4–6]. Thus, pocket

detection plays an important role in protein-ligand docking and structure-based drug design.
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Many protein cavity detection methods have been proposed in the literature for the last 35

years (see, for example, [4, 7–17]). However, only a few times have we seen such methods vali-

dated or certified relatively to a ground-truth underlying a database of known cavities or a

database of known binding sites. This is largely because the first such databases only made

their appearance in the early 2000s, after the debut of DIP (Database of Interacting Proteins)

available at http://dip.doe-mbi.ucla.edu/ for protein-protein interactions [18], in particular

BIND (Biomolecular Interaction Network Database) at https://bio.tools/bind [19] and Bin-

dingDB (https://www.bindingdb.org/bind/index.jsp) [20, 21] for interactions between any two

molecules consisting of proteins, nucleic acids, and ligands.

Since then, several databases exclusively dedicated to known protein-ligand bindings

have been reported in the literature, namely PDBsite [22], PLD [23], SitesBase [24], Binding

MOAD [25, 26], FireDB [27], PoSSuM [28], ccPDB [29], Pocketome [30], BioLiP [31], sc-

PDB-Frag [32], but only a few have been worked out as ground-truth datasets to certify the

accuracy of protein cavity detection methods [33–39], namely SCOP [40], Relibase [41],

PDBbind [42, 43], sc-PDB [3], LigASite [44], MPStruc (http://blanco.biomol.uci.edu/

mpstruc/). These ground-truth based methods use statistical analysis to check a technique’s

accuracy in finding putative binding sites. To this end, they use performance metrics such as

precision and recall [45], which are expressed in terms of false positives, true positives, false

negatives, or true negatives.

To the best of our knowledge, despite the aforementioned databases of known protein-

ligand binding sites and methods to identify protein cavities (or putative binding sites), there

is no benchmarking software to compare ground-truth datasets of binding sites. Neither are

there approaches to assess cavity detection methods against those ground-truth repositories

using statistical classification metrics, including recall, precision, and F-score. We designed

CavBench to fulfill this need, and more importantly, we made it XML-extensible to accommo-

date new cavity datasets, new binding-site datasets, and new cavity detection methods as they

become available. At the present time, CavBench includes a single ground-truth dataset of cav-

ities concerning 660 apo proteins and 1633 holo proteins, in a total of 2293 proteins. Holo-pro-

teins consider the structure of each protein combined with their ligand(s), while apo-proteins

only consider their isolated form. This dataset is here called CavDataset, and combines the

clefts, pores, and tunnels retrieved from PDBsum [1, 2]; PDBsum clefts were obtained using

SURFNET [46], while PDBsum pores and tunnels were retrieved though Mole [47]. CavBench

also integrates the following cavity detection methods: Fpocket [48], GaussianFinder [6],

GHECOM [36], and KVFinder [15]. This integration is made possible due to CavBench’s

XML-compliance.

In short, the main features of CavBench include platform-independence, interoperability,

and extensibility. It is platform-independent since it runs on any major operating system

namely, Mac OSX, Unix/Linux, and Windows. Its interoperability stems from its program-

ming in shell scripting and XML interfaces to datasets and methods. Finally, its extensibility

also results from its XML-based back-end.

Materials and methods

Background

Following the terminology of PDBSum [1, 2], the protein cavities can be classified as clefts, tun-
nels (channels), and pores (see Fig 1). A cleft is a depression on the molecular surface, and is

called a pocket if it is a shallow depression. A cleft often works as binding site for ligands and

other proteins. A protein may also possess internal cavities, also called voids, which are isolated

from the exterior environment. Voids often are enzymatic reaction sites, as a void constitutes a
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highly controlled environment inside the protein. But, if a void communicates with the exte-

rior environment of a given protein via one or more tunnels, it is called a chamber. A tunnel is

a ligand accessible pathway that goes from the protein surface to a chamber. But, while a tunnel

has a single entry on the protein surface, a pore has two entries (or an entry and an exit). In

fact, a pore is a tunnel through the protein that connects an entry to an exit on the protein sur-

face. Many pores work as selective transport pathways across membranes.

CavBench architecture overview

CavBench has been designed as a layered benchmark. It consists of the following three work-

spaces (or layers):

• Ground-truth datasets. Currently, the first workspace consists of a single dataset of cavities,

called CavDataset, but more datasets may be added in the future (e.g., the dataset of cavities

concerning already-known binding sites of sc-PDB [3]). In order to incorporate another

ground-truth dataset in the first workspace, we need to produce a XML-specification file

that describes it; for example, the CavDataset is described by the file CavDataset.xml.

Such XML file is generated from a dataset-specific parser (using some programming or

scripting language).

Fig 1. Main types of cavities: A—Pockets, B—Cavities, C—Tunnels, D—Pores (courtesy of Sehnal et al. [49]).

https://doi.org/10.1371/journal.pone.0223596.g001
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• Method-specific parsers. The second workspace comprises the parsers that are specific to cav-

ity detection methods. A method-specific parser transforms the output (predicted cavities in

each protein) of each method into clusters of spheres described in a XML file.

• Cavity benchmark. The third workspace has been designed to contrast the method-specific

predicted cavities of one or more proteins against the ground-truth cavities. The benchmark

generates not only a cavity overlapping matrix for each protein, which determines the

amount of overlapping between ground-truth cavities and method-specific predicted cavi-

ties, but also method-specific statistics for true positives, false positives, true negatives, and

false negatives, as well as precision, recall, and F-score values for distinct methods.

We proceed by providing a more detailed description of each workspace in CavBench.

Ground-truth datasets

In order to carry out testing in a reasonable time, the ground-truth workspace comprises a sin-

gle dataset, called CavDataset, which consists of a subset of the PDBsum dataset (http://www.

ebi.ac.uk/pdbsum/) [1, 2]. At our best knowledge, PDBsum is the only repository that includes

a dataset of geometric cavities of proteins; these cavities do not necessarily match binding sites

on protein surfaces. As mentioned above, CavDataset comprises 2293 proteins, among which

we find 660 apo proteins and 1633 holo proteins. An apo structure is considered to be an iso-

lated protein without any ligands attached. On the other hand, an holo structure is a protein-

ligand complex, identified by a different PDB entry, and very frequently characterized by some

level of structural deformation (in relation to its apo form) caused by the binding event.

Taking into consideration the classification of protein cavities above (see Fig 1), each pro-

tein of the ground-truth dataset is associated to a single .xml file that describes such cavities.

For example, the cavities of the protein 1A4U are specified in the file 1a4u.xml of the

CavDataset (see Fig 2). This .xml file is the result of the fusion of three separate files: 1a4u-
clefts.pl, 1a4u-tunnels.xml, and 1a4u-pores.xml. The first is a Perl file that

was directly retrieved from the PDBsum web site, and only describes the clefts of the protein

1A4U. The second and third files describe tunnels and pores as generated from Mole (http://

mole.chemi.muni.cz/web/index.php) [47], which is a program that locates and characterizes

tunnels and pores in proteins. Note that it is also feasible to directly retrieve a list of tunnels

and pores of each protein from PDBsum, which also uses Mole for such purpose, but not their

constituent pseudo-atoms and volumes. Mole builds upon a Voronoi tessellation and a Dijsk-

tra path search algorithm to find such types of cavities.

PDBsum clefts. To generate the .xml files that describe the clefts of the proteins of the

CavDataset, first their .pl files (Perl files) were extracted from the PDBsum web site. Each .pl

file (without protein structure) lists the dummy atoms (also called pseudo-atoms or hetero-

atoms) of each cleft, as illustrated in Fig 3. Then, each .pl file was parsed to generate an .xml

file that describes the clefts of each protein. As a result, we obtain the corresponding .xml files

for clefts, each one having the structure shown in Fig 2. Note that each cleft is represented by a

list of dummy atoms (or spheres), each one specified by means of its radius and center coordi-

nates. As in the PDBsum web site, the clefts in Fig 2 are listed in the decreasing order of their

volumes.

Mole tunnels and pores. PDBsum provides the tunnels and pores of a given protein, but

does not list their dummy atoms and volumes. However, we can get such dummy atoms using

Mole (http://mole.chemi.muni.cz/web/index.php). Mole takes the standard PDB file of such a

protein and generates two separate .xml files, the first describing its tunnels, while the second

its pores.

CavBench
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In practice, because we are only interested in shape information of cavities, our parsers

for tunnels and pores only extract geometric cavity information (i.e., their dummy atoms)

from a Mole .xml file, generating two CavBench .xml files with the same structure as the one

for clefts shown in Fig 2, the first for tunnels and the second for pores. Recall that, as men-

tioned above, the three .xml files for clefts, tunnels, and pores concerning a single protein are

merged into a single .xml file. That is, the CavDataset consists of 2293 .xml files concerning

2293 proteins.

Fig 2. A snippet of XML file 1a4u.xml partially describing two clefts of the protein 1A4U in the CavDataset.

https://doi.org/10.1371/journal.pone.0223596.g002

Fig 3. Snippets of the Perl file 1gfs.pl (concerning the protein 1GFS) that describes the volume of the second cluster (or cleft) and three of its

dummy atoms.

https://doi.org/10.1371/journal.pone.0223596.g003
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Method-specific parsers

These parsers form the second workspace (or layer). As known, the input format of each cavity

detection method/software is standard, as it consists of a PDB file describing the structure of a

protein. However, its output (e.g., clusters of points) is not standard and varies from a method

to another. To standardize the output produced by each cavity detection method, the corre-

sponding method-specific output file (e.g., PDB-like file) must be converted into an XML file

describing the cavities of each protein, as shown in Fig 2; that is, each cavity must be expressed

as a cluster of spheres, each representing a pseudo-atom. Such PDB-like-to-XML parsing pro-

cess is illustrated in Fig 4 for a cavity detection method called Fpocket.

Thus, adding a new cavity detection method to CavBench requires:

• To create its PDB-like-to-XML parser.

• To add its dataset to CavBench; that is, to add the .xml files produced by its parser for the

proteins existing in CavBench.

In other words, CavBench does not run the code of any specific cavity detection method.

However, it incorporates the 2293 .xml files generated by each method-specific parser, one file

per protein. Although each .xml file is generated from the typical output PDB-like format file

of most methods, each method has its own peculiarities, namely:

Fpocket. This is a Voronoi tessellation method [48]. Its output is not a single file, but a set

of files for each protein. Fpocket outputs two PDB-like files per cavity. The first file is a .pqr file

that lists Voronoi balls (of variable radius) which fill in the cavity. The second file owns exten-

sion .pdb and lists the atoms that enter in contact with the Voronoi balls. Therefore, as illus-

trated in Fig 4, our Fpocket-specific parser reunites all these PDB-like files into a single

CavBench’s XML file that describes all cavities of a single protein.

GHECOM. GHECOM is a grid-and-sphere method [36] which outputs a single PDB-like

file that lists the pseudo-atoms of all cavities of a specific protein. Each pseudo-atom (or het-

ero-atom) is a sphere whose center is a grid point located outside the protein, with its radius

taking on the value of half the spacing. Unlike Fpocket, this method does not provide any

information concerning atoms of the protein surface that interface with cavity hetero-atoms.

So, our GHECOM-specific parser basically converts the GHECOM output PDB-like file into a

CavBench’s XML file that lists the cavities of a given protein and their hetero-atoms.

KVFinder. KVFinder is another grid-and-sphere method that outputs a single PDB-like

file per protein [15]. As usual, each pseudo-atom is described by its center and radius. How-

ever, the listing of pseudo-atoms does not include information about their cavities. To over-

come this problem, we used the DBSCAN clustering algorithm [50] to transform the soup of

pseudo-atoms outputted by KVFinder into a set of clusters of pseudo-atoms, with each cluster

featuring a cavity. Unlike k-means clustering [51, 52], DBSCAN has the advantage of not

requiring the a priori specification of the number of clusters in the point data. Isolated points

or points with only a few neighboring points were considered as noise outliers. Finished such

clustering, our KVFinder-specific parser produced the CavBench’s XML file that describes the

cavities of each protein in terms of its pseudo-atoms.

GaussianFinder. GaussianFinder is a grid-and-surface method [6]. It also produces a sin-

gle PDB-like file per protein. Similar to KVFinder, it outputs the set of grid nodes concerning

cavities, but does not provide the cavity identifier associated to each grid node. Similar to

GHECOM, the radius of the pseudo-atom centered at each grid node is half the grid spacing.

The cluster of hetero-atoms concerning each cavity was also obtained using the DBSCAN clus-

tering [50]. Finally, we were in position of using our GaussianFinder-specific parser to gener-

ate the CavBench’s XML file that describes all cavities of each protein.

CavBench
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Recall that all these geometric methods to detect cavities are agnostic to the type of cavities.

In other words, they only deliver cavities, no matter if they are clefts, tunnels, or pores. Accord-

ing to the XML schema shown in Fig 2, agnostic cavities own the type NOTYPE. In fact, Cav-

Bench carries out the XML-based standardization of the ground-truth and method-specific

cavities to make them comparable. That is, both ground-truth and method-specific cavities are

expressed as clusters of spheres.

Cavity benchmark

The cavity benchmark corresponds to the third workspace of CavBench, whose workflow is

shown in Fig 5. Our cavity benchmark builds upon statistical classification (i.e., an example of

supervised learning), as usual in machine learning and statistics. However, we are not using

machine learning techniques as convolutional neural networks to determine cavities on pro-

tein surfaces. Nevertheless, we can see the ground-truth dataset as the training set, and the cav-

ities determined by each method (e.g., Fpocket) as the testing set. Recall that our ground-truth

consists of two subsidiary datasets. The first concerns the surface cavities (i.e., PDBsum clefts),

while the second includes tubular cavities (i.e., PDBsum/Mole tunnels and pores). On the

other hand, the cavities outputted by each geometric method are type-agnostic.

Cavity overlapping evaluator. To evaluate the prediction quality of putative binding-sites

of each cavity detection method in the benchmark, we determine the Jaccard index (or Jaccard

similarity coefficient) which measures similarity between method-specific cavities ci (i = 1, . . .,

m) and their ground-truth cavities Cj (j = 1, . . ., n). Given the pair (ci, Cj), the Jaccard index

J(ci, Cj) is defined as the size of the intersection of such cavities divided by the size of their

union, i.e.,

Jðci;CjÞ ¼
ci \ Cj

ci [ Cj
:

Ideally, J = 1, i.e., ci is congruent with Cj. Thus, the Jaccard index works as a cavity similarity

evaluator (or cavity overlapping evaluator) that computes the percentage of intersection rela-

tive to the union of ci and Cj. This amounts to determine the percentage of pseudo-atom

Fig 4. Workflow of the Fpocket-specific parser for the protein 1A4U, that transforms the multiple-file PDB-like output of Fpocket into a single .

xml file called 1a4u-fpocket.xml.

https://doi.org/10.1371/journal.pone.0223596.g004

Fig 5. CavBench’s workflow to compare Fpocket-specific cavities with ground-truth cavities.

https://doi.org/10.1371/journal.pone.0223596.g005
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centers of ci \ Cj relative to pseudo-atom centers of ci [ Cj. Note that our overlapping condi-

tion given by the Jaccard index is stricter than the spanning condition used in other studies

[53–55], which states that a prediction is a hit if the barycenter of the predicted pocket is within

4Å to any atom belonging to the ligand.

Thus, our cavity overlapping evaluator produces an overlapping matrix for each protein, as

shown in Fig 6, where rows represent method-specific cavities and columns the ground-truth

cavities; the first ten columns concern PDBsum clefts, and the remaining columns indicate

PDBsum/Mole tunnels and pores. Taking into consideration that CavBench’s dataset includes

2293 proteins, we need to produce 2293 overlapping matrices to evaluate the performance of

each cavity detection method. A 3D representation of part of an overlapping matrix depicting

the overlapped volumes between cavities detected by the method and those from the ground-

truth can be seen in Fig 7.

Statistical classifier. As illustrated in Fig 5, the statistical classifier computes the number

of true positives (TP), false positives (FP), and false negatives (FN) from the overlapping

matrix of each protein. A true positive is a hit, that is, a cavity ci detected by a specific method

that overlaps at least one ground-truth cavity Cj of a given protein, i.e., ci \ Cj 6¼⌀. For exam-

ple, in Fig 6, we see that the cavity c14 detected by GaussianFinder for the protein 180L is a

true positive because its Jaccard similarity index relative to the ground-truth cleft C8 is 58.99%.

Furthermore, c14 does not overlap any other ground-truth cavity, so there is no repetition to

consider. On the contrary, c2 overlaps three ground-truth cavities, namely the clefts C2, C3,

Fig 6. The overlapping matrix produced by the cavity overlapping evaluator for the protein 180L, as a result of benchmarking the cavities

outputted by the GaussianFinder against the ground-truth dataset. Columns correspond to ground-truth cavities and rows to cavities detected by

the GaussianFinder method. True positives (TP) correspond to rows (GaussianFinder cavities) containing at least a green cell; false positives (FP) are

identified by rows (GaussianFinder cavities) without any green cell, i.e., they do not meet any ground-truth cavity; false negatives (FN) are identified by

columns (i.e., ground-truth cavities) in red. This example contains 11 TP (rows), 10 FP (rows) and 2 FN (columns).

https://doi.org/10.1371/journal.pone.0223596.g006
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and C6, in a scenario with repetitions. Obviously, discarding the repetitions, we would keep C3

because it is the most similar to c2, with a Jaccard index of 72.01%.

A false positive is a method-specific cavity that does not overlap any ground-truth cavity.

For example, c4 in Fig 6 is a false positive because it does not intersect any ground-truth cavity.

Therefore, we identify false positives by zeroed rows (only zeros) of the overlapping matrix or,

equivalently, cavities detected by the method, but that do not exist in the ground-truth.

A false negative is a ground-truth cavity that is not detected by the method. For example,

the cavity C9 is a false negative because it does not intersect any method-specific cavity for the

given protein. False negatives can be recognized by zeroed columns, which denote cavities

existing in the ground-truth, but not detected by a specific method.

The computation of true negatives (TN) is a bit more complex. A true negative is a protein

cavity that is not part of the ground-truth nor is detected by a specific method for a given pro-

tein. This means that true negatives cannot be inferred from the overlapping matrix associated

to a given protein. These true negative cavities are important because they can be seen as

unknown binding sites, which eventually will be sites for binding new drugs or ligands. The

Fig 7. Overlapping matrix (top) and voxelized, cross-eyed stereoscopic 3D visualization of the protein 1A4U. The example represents the overlap

between 5 method-detected cavities (rows) and 10 ground-truth cavities (columns). The overlapped portions of the ground-truth cavities are rendered

with opaque colors (true positives), and the non-overlapped portions as semi-transparent (false negatives). This example shows that the method

detected roughly 13.6% of the first cavity (red), 1.5% of the second (orange), 2.3% of the fourth (light green), 1.4% of the sixth (cyan), and 11.8% of the

eigth (purple).

https://doi.org/10.1371/journal.pone.0223596.g007
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procedure of computing true negatives for each method is as follows: (i) determine the convex

hull of the protein; (ii) construct the union that comprises protein atoms, ground-truth cavity

pseudo-atoms, and method-specific cavity pseudo-atoms; (iii) construct the difference

between such convex hull (first step) and union (second step); (iv) apply DBSCAN to form

undetected cavities from the empty difference space. Nevertheless, our statistical study focuses

on positive (rather than negative) samples, so we end up not to compute TNs at all.

Performance evaluator. As illustrated in Fig 5, CavBench evaluates the performance of a

given cavity detection method (e.g., Fpocket) through three metrics: precision (p), recall (r),
and F-score (F).

The precision is a measure of the performance of a given cavity detection method. It is

defined by the number of correctly identified cavities divided by the number of all identified

cavities of a specific cavity detection method, that is:

p ¼
TP

TP þ FP
ð1Þ

The recall is also known as sensitivity, true positive rate, or probability of detection, and is

given by

r ¼
TP

TP þ FN
ð2Þ

where TP + FN is the number of positive samples. In the context of protein cavity detection,

the recall measures the rate (or percentage) of positives that are correctly identified by a spe-

cific method.

The previous two metrics (precision and recall) do not depend on the number of true nega-

tives, that is, they both apply to the positive class. The F-score combines precision and recall

metrics into a single performance metric for each cavity detection method. Specifically, the F-

score is the harmonic mean of precision and recall [56], that is,

F ¼
2TP

2TP þ FP þ FN
ð3Þ

Thus, what determines whether a method performs better than another is its higher value

of F-score. In fact, a brief glance at Tables 1 and 2 shows us that Fpocket and GaussianFinder

perform better than the GHECOM and KVFinder because their F-score values are higher than

those of the latter ones. Furthermore, Fpocket generally performs better than GaussianFinder,

particularly when we do not consider repetitions.

Table 1. Classification (TP, FP, FN) and performance (p, r, F) results with repetitions. Four cavity detection methods are benchmarked against the ground-truth:

Fpocket, GaussianFinder, GHECOM, and KVfinder.

Method APOs HOLOs APOs + HOLOs

TP FP FN p r F TP FP FN p r F p r F
Fpocket 16722 1480 3644 0.92 0.82 0.86 50027 5722 8699 0.90 0.85 0.87 0.90 0.84 0.87

GaussianFinder 16441 2443 1251 0.87 0.93 0.90 45011 7939 2964 0.85 0.94 0.89 0.86 0.94 0.89

GHECOM 11875 5946 5307 0.67 0.69 0.68 33962 19566 13917 0.63 0.71 0.67 0.64 0.70 0.67

KVFinder 8074 1378 7590 0.85 0.52 0.64 23385 3643 19885 0.87 0.54 0.67 0.86 0.53 0.66

Abbreviations:

APOs: apo proteins; HOLOs: holo proteins.

TP: true positives; FP: false positives; FN: false negatives.

p: precision; r: recall; F: F-score.

https://doi.org/10.1371/journal.pone.0223596.t001
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Results

As suggested by the CavBench workflow shown in Fig 5, we end up getting three types of

results for each cavity detection method: overlapping matrices (one per protein), classification

results, and performance results. These results can be all retrieved from CavBench since we

provide the entire method-specific dataset (e.g., the set of all xxxx-GaussianFinder .xml files,

one per protein, where xxxx denotes the alphanumeric identifier of each protein) beforehand.

Optionally, results for a single protein or a small set of proteins can be also retrieved in the .csv

file format.

Overlapping results

By default, the overlapping matrices (one per protein) generated by CavBench for a cavity

detection method provide raw results, that is, results with repetitions. In other words, not all

method-specific cavities ci establish a one-to-one relationship with ground-truth cavities Cj.
A brief glance at Fig 6 shows us that the overlapping matrix concerning the protein 180L

exhibits rows where a single method-detected cavity overlaps more than one ground-truth cav-

ity. That is, overlapping results in Fig 6 include repetitions. For example, c2 intersects three

ground-truth cavities, C2, C3, and C6; in this case, the repetitions (c2, C2) and (c2, C6) are

thrown away (i.e., their overlapping percentages with c2 are set to zero) because C3 is the

ground-truth cavity that most overlaps c2, with a percentage of 72.01%. Likewise, C2 is over-

lapped by four method-specific cavities, c2, c3, c5, and c7, but c5 is the one that most overlaps

C2, with overlapping percentage of 43.52%; consequently, the overlapping percentages of (c2,

C2), (c3, C2), and (c7, C2) are set to zero. Obviously, as explained below, removing repetitions

alter the classification results in terms of TP, FP, and FN. Hence, we considered two scenarios

for results, with and without repetitions (see Tables 1 and 2).

Classification results

The classification results are expressed in terms of the number of TP, FP, and FN, and are

obtained from the overlapping matrices associated with the proteins. Table 1 lists such results

with repetitions for Fpocket, GaussianFinder, GHECOM, and KVFinder, while Table 2 pres-

ents the results without repetitions for the same four methods. By comparing the classification

results of both Tables 1 and 2, we see that the removal of repetitions decreases the number of

true positives, and increases the number of false positives and false negatives. For example,

looking again at Fig 6, we see that c5 is a true positive because it is the the cavity that most

Table 2. Classification (TP, FP, FN) and performance (p, r, F) results without repetitions. Four cavity detection methods are benchmarked against the ground-truth:

Fpocket, GaussianFinder, GHECOM, and KVfinder.

Method APOs HOLOs APOs + HOLOs

TP FP FN p r F TP FP FN p r F p r F
Fpocket 4697 4763 8291 0.50 0.36 0.42 13932 17522 20651 0.44 0.40 0.42 0.45 0.39 0.42

GaussianFinder 3774 4711 9214 0.44 0.29 0.35 9724 14793 24859 0.40 0.28 0.33 0.41 0.28 0.34

GHECOM 3629 8259 9359 0.31 0.28 0.29 10027 27233 24556 0.27 0.29 0.28 0.28 0.29 0.28

KVFinder 2608 2688 10380 0.49 0.20 0.29 7398 7985 27185 0.48 0.21 0.30 0.48 0.21 0.29

Abbreviations:

APOs: apo proteins; HOLOs: holo proteins.

TP: true positives; FP: false positives; FN: false negatives.

p: precision; r: recall; F: F-score.

https://doi.org/10.1371/journal.pone.0223596.t002
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overlaps or resembles C2; so, setting the overlapping percentage of (c3, C2) to zero originates a

new false positive and, consequently, decrements the number of true positives. Furthermore,

eliminating the repetitions may also lead to the increase of the number of false negatives and,

at the same time, decreasing the number of true positives. For example, removing the repeti-

tion (c7, C4) creates a new false negative and decrements the number of true positives.

Performance results

As usual, there are two methodologies to discuss the performance of a given method based on

its results. The first methodology consists in finding precision values when the recall varies in

the interval [0, 1], or vice-versa. The second methodology is more straightforward, and con-

sists in combining both scores into a single measure. In either methodology, precision and

recall scores are discussed jointly, not in isolation. Here, we have adopted the second method-

ology by computing the F-score, which, as mentioned above, is the harmonic mean of precision

and recall.

The performance results are presented in Tables 1 and 2 considering both scenarios with

and without repetitions, respectively. Note that performance results are better for the scenario

with repetitions than without repetitions. For example, the F-score of GaussianFinder takes on

the value of 0.89 considering repetitions, and 0.34 without repetitions. In fact, as seen above,

discarding repetitions has the effect of reducing the number of true positives (TP) and increas-

ing the number of false positives (FP) and false negatives (FN), while keeping the same total

numbers of method-detected and ground-truth cavities, and thus changing the values of preci-

sion, recall, and F-score as given by Eqs (1)–(3).

Precision. In the scenario with repetitions (Table 1), Fpocket is more precise than

any other method; that is, it is capable of correctly identifying more cavities (relative to all

identified cavities) than the remaining methods. In fact, considering apo and holo proteins

altogether, its precision is 0.90 (in the interval [0, 1]), while the precision values of Gaussian-

Finder, GHECOM, and KVFinder are 0.86, 0.64, and 0.86, respectively. Note that Fpocket

also performs more precisely than the other three methods in the scenario without repetitions

(Table 2).

Recall. A brief glance at Tables 1 and 2 allows us to observe that the probability of a

method to correctly detect positives is higher for the scenario with repetitions than without

repetitions. In addition, such a probability (i.e., recall) is consistently higher for GaussianFin-

der than any other method. In fact, we see that GaussianFinder ranks first with a joint

probability of detection (for apo and holo proteins) of 0.94, while Fpocket, GHECOM, and

KVFinder come next with 0.84, 0.70, and 0.53, respectively. However, this ranking does not

hold in the scenario without repetitions, as Fpocket performs better than any other method

concerning recall, which takes on the value of 0.39.

F-score. By blending precision and recall into a single score, called F-score, we end up

having only one metric to measure the performance of each cavity detection method. Based on

the results shown in Tables 1 and 2 we see that GaussianFinder performs better than any other

method in the scenario with repetitions (F = 0.89), while Fpocket ranks first in the scenario

without repetitions (F = 0.42), considering apo and holo proteins as a whole.

CavBench software

CavBench is available at https://github.com/mosqueteer/CavBench/. It was designed as a

standalone software suite to run entirely on Linux, Mac OSX, and Windows (via Power Shell)

using shell scripting. Its idea is to easily and quickly compare any new technique against state-
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of-the-art methods that detect cavities on protein surfaces. That is, CavBench is platform-

independent.

Its platform-independence is reinforced by the fact that it does not run any protein cavity

method. In fact, any new method should run outside the scope of CavBench, and produce its

dataset of cavities concerning the 2293 proteins in the .xml or .csv formats, whose files

are then processed by CavBench. Such an XML dataset describing cavities detected by a spe-

cific (eventually new) method allows us to compare it to other methods using information

stored in CavBench. Essentially, the CavBench suite only runs the three programs in the

workflow shown in Fig 5. Thus, the XML design of CavBench reinforces the interoperability

between distinct operating systems and their versions. Besides, CavBench does not require

installing or compiling programs in some remote execution environment. These features

make the CavBench suite easy to run and its results more readily accessible to the research

community.

Conclusions

Identifying cavities on protein surfaces is an important step to both drug design and discovery,

and protein docking. So far, researchers have used ad-hoc methods to compare each new cav-

ity detection method against known binding sites. This has made it difficult to assess the rela-

tive strengths and limitations of new techniques, since there is no common ground against

which to evaluate new research. To the best of our knowledge, no benchmark has been pro-

posed in the literature to allow comparing cavity detection methods to one another or relative

to a ground-truth dataset. We designed CavBench as such a benchmark to fill that gap.

As future work, we intend to also consider true negatives in our benchmark, as well as new

metrics to account for the negative class. Furthermore, we plan to add more method-specific

datasets (i.e., more methods) and ground-truth datasets to CavBench. We also plan to paralle-

lize CavBench’s workflow using GPUs, as well as to create a graphical user interface and add

more data visualization tools to provide a more friendly and interactive user experience while

affording better insights into comparing method performances.
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