50 research outputs found

    Complementarity of conventional and molecular methods in the assessment of fungal contamination caused by Aspergillus fumigatus complex in one Portuguese composting plant

    Get PDF
    The handling of waste and compost that occurs frequently in composting plants (compost turning, shredding, and screening) has been shown to be responsible for the release of dust and air borne microorganisms and their compounds in the air. Thermophilic fungi, such as A. fumigatus, have been reported and this kind of contamination in composting facilities has been associated with increased respiratory symptoms among compost workers. This study intended to characterize fungal contamination in a totally indoor composting plant located in Portugal. Besides conventional methods, molecular biology was also applied to overcome eventual limitations

    From the farm to the fork: fungal occupational exposure in the swine meat supply chain

    Get PDF
    Feed production, swine and slaughterhouses were already reported as occupational environments with high fungal contamination. This condition can ultimately lead to the development of several health conditions. This study aimed to characterize the occupational exposure to fungal burden in three different settings: swine feed unit, swine units and slaughterhouse

    Rab27a Regulates the Peripheral Distribution of Melanosomes in Melanocytes

    Get PDF
    Rab GTPases are regulators of intracellular membrane traffic. We report a possible function of Rab27a, a protein implicated in several diseases, including Griscelli syndrome, choroideremia, and the Hermansky-Pudlak syndrome mouse model, gunmetal. We studied endogenous Rab27a and overexpressed enhanced GFP-Rab27a fusion protein in several cultured melanocyte and melanoma-derived cell lines. In pigmented cells, we observed that Rab27a decorates melanosomes, whereas in nonpigmented cells Rab27a colocalizes with melanosome-resident proteins. When dominant interfering Rab27a mutants were expressed in pigmented cells, we observed a redistribution of pigment granules with perinuclear clustering. This phenotype is similar to that observed by others in melanocytes derived from the ashen and dilute mutant mice, which bear mutations in the Rab27a and MyoVa loci, respectively. We also found that myosinVa coimmunoprecipitates with Rab27a in extracts from melanocytes and that both Rab27a and myosinVa colocalize on the cytoplasmic face of peripheral melanosomes in wild-type melanocytes. However, the amount of myosinVa in melanosomes from Rab27a-deficient ashen melanocytes is greatly reduced. These results, together with recent data implicating myosinVa in the peripheral capture of melanosomes, suggest that Rab27a is necessary for the recruitment of myosinVa, so allowing the peripheral retention of melanosomes in melanocytes

    Microbial contamination in the coffee industry: an occupational menace besides a food safety concern?

    Get PDF
    FCT_UIDB/05608/2020. FCT_UIDP/05608/2020.Respiratory abnormalities among workers at coffee roasting and packaging facilities have already been reported; however, little is known about microbiological contamination inside coffee production facilities. This study intends to assess the microbial contamination (fungi and bacteria) in two coffee industries in Brazil with a multi-approach protocol for sampling and for subsequent analyses using four main sources of samples: filtering respiratory protection devices (FRPD) used by workers, settled dust, electrostatic dust cloths (EDC) and coffee beans. The fungal contamination in the assessed industries was also characterized through the molecular detection of toxigenic species and antifungal resistance. Total bacteria contamination presented the highest values in FRPD collected from both industries (7.45 × 104 CFU.m−2; 1.09 × 104 CFU.m−2). Aspergillus genera were widespread in all the environmental samples collected and sections with clinical relevance (Fumigati) and with toxigenic potential (Nigri and Circumdati) were recovered from FRPD. Circumdati section was observed in 4 mg/mL itraconazole. Sections Circumdati (EDC, coffee beans, and settled dust) and Nidulantes (EDC, coffee beans, and FRPD) were detected by qPCR. Some of the targeted Aspergillus sections that have been identified microscopically were not detected by qPCR and vice-versa. Overall, this study revealed that microbial contamination is a potential occupational risk in the milling stage and should be tackled when assessing exposure and performing a risk assessment. In addition, a multi-sampling campaign should be the approach to follow when assessing microbial contamination and FRPD should be included in this campaign. Occupational exposure to mycotoxins should be considered due to high fungal diversity and contamination. A One Health approach should address these issues in order to prevent the consumption of coffee crops and beans infected by fungi and, more specifically, to avoid widespread azole resistance.H&TRC—Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa.info:eu-repo/semantics/publishedVersio

    Cholesterol 24S-Hydroxylase overexpression inhibits the liver X receptor (LXR) pathway by activating small guanosine triphosphate-binding proteins (sGTPases) in neuronal cells

    Get PDF
    The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes

    MicroRNA‐181a restricts human γδ T cell differentiation by targeting Map3k2 and Notch2

    Get PDF
    γδ T cells are a conserved population of lymphocytes that contributes to anti-tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL-2 or IL-15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA-181a as a key modulator of human γδ T cell differentiation. We observe that miR-181a is highly expressed in patients with prostate cancer and that this pattern is associated with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR-181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR-181a overexpression restricts their levels of NKG2D and TNF-α. Upon in silico analysis, we identify two miR-181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR-181a as a critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next-generation immunotherapies.info:eu-repo/semantics/publishedVersio

    A key role for microRNAs in the development and functional differentiation of γδ T cell subsets

    Get PDF
    The ability of murine γδ T cells to rapidly produce the pro-inflammatory cytokines interleukin 17 (IL-17) or interferon-γ (IFN-γ) underlies their crucial roles in several (patho)physiological contexts. This capacity stems from a complex process of ‘developmental pre-programming in the thymus, after which a large fraction of γδ T cells migrate to peripheral sites already committed to producing either the IL-17 or IFN-γ. We have previously found that one microRNA, miR-146a, maintains peripheral γδ T cell identity by inhibiting IFN-g production by the IL-17-committed CD27− gδ T cell subset. To further and more globally address the role of microRNAs in effector γδ T cell differentiation, we established a double reporter IL17-GFP:IFN-γ-YFP mouse strain and isolated pure IL-17+ and IFN-γ+ γδ T cell populations from the peripheral lymphoid organs to perform small RNA-sequencing. This allowed us to identify clearly distinct microRNA signatures associated with cytokine expression in γδ T cells, from which we selected ten candidate microRNAs differentially expressed between IL-17+ and IFN-γ+ γδ T cells to study further. We characterized the detailed expression pattern of each candidate microRNA in γδ T cell subsets throughout mouse ontogeny and upon gain-of-function studies in in vitro cultures of γδ T cells. Our results indicate that while some microRNAs, such as miR-128-3p and miR181a-5p, regulate γδ T cell development in the thymus, other candidates, including miR-7a-5p, miR-139-5p, miR-322-5p, and miR-450b-3p, modulate peripheral γδ T cell effector functions. More specifically, using a miR-181a deficient mouse model, we have found that miR-181a, highly expressed in immature γδ T cell subsets in the thymus, shifts the in vivo IL-17/IFN-γ balance towards the IL-17 pathway in neonatal life, which is further maintained in the periphery during adult life. On the other hand, miR-7a-5p and miR-139-5p, overexpressed in peripheral IFN-g+ γδ T cells, regulate peripheral γδ T cell effector functions, either acting as an IFN-γ auto-repressor (miR-139-5p) or promoting functional plasticity (miR-7a-5p). Finally, miR-322-5p and miR-450b-3p, overexpressed in IL-17+ γδ T cells, may have therapeutic potential by modulating the production of IFNγ, whose levels are critical in anti-tumoral and anti-viral responses. These data demonstrate the impact of microRNAs on the differentiation and functional identity of effector γδ T cell subsets, which may open new avenues for their manipulation in disease settings.info:eu-repo/semantics/publishedVersio

    Role of microRNAs on T cell differentiation during immune responses in vivo

    Get PDF
    CD4+ T cells are key players in host defense against pathogens, but an incorrect balance between CD4+ T cell subsets, namely pro-inflammatory effector cells, including T helper 1 (Th)1 and Th17 cells (IFN-γ- and IL-17-producers, respectively), and anti-inflammatory regulatory cells (Treg; Foxp3+ subset), can lead to immune-mediated diseases. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. While individual miRNAs were shown to regulate the differentiation of specific CD4+ T cell populations, a holistic approach based on in vivo responses is missing and is critical to understanding how miRNA networks control this balance under physiological conditions. To address this, we have established a triple reporter mouse for Ifng, Il17, and Foxp3, and subject it to experimental autoimmune encephalomyelitis (EAE). We perform miRNA-seq analysis on Th1, Th17, and Treg cells isolated from the spleen (SPL) and lymph nodes (LNs) at the peak-plateau stage and found that 110 miRNAs are differentially expressed between effector and regulatory subsets. We further selected 8 candidate miRNAs that were specifically upregulated in one population versus the others. Both overexpression and inhibition studies showed that miR-126a limits IL-17+ expression in Th17 cells in vitro. Treatment with antagomiRs in vivo showed that silencing miR-122 increased the number of IL-17+ cells in the LNs and precipitated the onset of EAE, whereas inhibition of miR-1247 decreased the severity of the disease by reducing the number of IFN-γ+ cells, also in the LNs. Additionally, we identified IL-6 and TGF-β as the key cytokines upstream of miR-126a and miR-1247 expression, respectively. While both IL-6 and TGF-β also induce miR-122 expression, we found that IL-23 and IL-1β repress its expression. Interestingly, and given that IL-23 and IL-1β are critical to inducing Th17-mediated pathogenicity, we have consistently observed a pathogenic gene signature in CNS-derived Th17 cells when compared to peripheral Th17 cells with concomitantly decreased levels of miR-126a and miR-122. Overall, our results suggest that miR-126a and miR-122 regulate IL-17 expression and the pathogenic phenotype of Th17 cells to prevent excessive inflammation in the periphery while miR-1247 maintains the inflammatory phenotype of Th1 cells in an anti-inflammatory environment.info:eu-repo/semantics/publishedVersio

    Diversity of vertebrate splicing factor U2AF35 : identification of alternatively spliced U2AF1 mRNAS

    Get PDF
    © 2004 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. This is an Open Access article under the CC BY license.U2 small nuclear ribonucleoprotein auxiliary factor small subunit (U2AF(35)) is encoded by a conserved gene designated U2AF1. Here we provide evidence for the existence of alternative vertebrate transcripts encoding different U2AF(35) isoforms. Three mRNA isoforms (termed U2AF(35)a-c) were produced by alternative splicing of the human U2AF1 gene. U2AF(35)c contains a premature stop codon that targets the resulting mRNA to nonsense-mediated mRNA decay. U2AF(35)b differs from the previously described U2AF(35)a isoform in 7 amino acids located at the atypical RNA Recognition Motif involved in dimerization with U2AF(65). Biochemical experiments indicate that isoform U2AF(35)b, which has been highly conserved from fish to man, maintains the ability to interact with U2AF(65), stimulates U2AF(65) binding to a pre-mRNA, and promotes U2AF splicing activity in vitro. Real time, quantitative PCR analysis indicates that U2AF(35)a is the most abundant isoform expressed in murine tissues, although the ratio between U2AF(35)a and U2AF(35)b varies from 10-fold in the brain to 20-fold in skeletal muscle. We propose that post-transcriptional regulation of U2AF1 gene expression may provide a mechanism by which the relative cellular concentration and availability of U2AF(35) protein isoforms are modulated, thus contributing to the finely tuned control of splicing events in different tissues.This work was supported in part by Grant POCTI/MGI/36547/2000 from Fundação para a Ciência e Tecnologia, Portugal, and by Grant RG0300/2000-M from the Human Frontier Science Program Organization. Supported by Fundação para a Ciência e Tecnologia Fellowship PRAXIS XXI/BD/18044/98. Supported by Fundação para a Ciência e Tecnologia Fellowship POCTI SFRH/BPD/9388/2002. Supported by Fundação para a Ciência e Tecnologia Fellowship PRAXIS XXI SFRH/BD/2914/2000.info:eu-repo/semantics/publishedVersio

    Bioburden assessment by passive methods on a clinical pathology service in one central hospital from Lisbon: what can it tell us regarding patients and staff exposure?

    Get PDF
    Project EXPOsE. Project nº 23222 (02/SAICT/2016).The assessment and control of microbial contamination in health care facilities is presently a mandatory and vital part of strategies to prevent and control hospital-acquired infections. This study aims to assess the bioburden with two passive sampling methods (30 ventilations grids swabs and 16 electrostatic dust collectors (EDCs)) at Clinical Pathology Services. The fungal burden was characterized through molecular tools, antifungal resistance, and the mycotoxins and cytotoxicity profile. Total bacteria presented the highest prevalence in both matrixes, whereas Gram-bacteria presented the lowest. Swabs presented a higher prevalence (27.6%) for fungal burden. Chrysonilia sitophila presented the highest prevalence in swabs, whereas for EDCs, C. sitophila and Mucor sp. were the most prevalent. Concerning Aspergillus genera on swabs, section Flavi was the one with the highest prevalence (58.02%), whereas, for EDCs, section Versicolores was the only section observed (100%). Aspergillus section Fumigati was detected in 10 swabs and 7 EDC samples and Aspergillus section Versicolores were detected in one EDC sample. Fungal growth on azole-supplemented media was observed in eight EDC samples. No mycotoxins were detected in any of the samples. A low cytotoxic effect was observed in two sites upon incubation of collected samples with A549 and SK cells and in two other sites upon incubation of collected samples with SK cells only. A medium cytotoxic effect was observed with one EDC sample upon incubation with A549 cells. This study reinforces the need for determination of the azole resistance profile for fungal species and allowed a preliminary risk characterization regarding the cytotoxicity. An intervention including the use of ultraviolet with a wavelength between 200 nm and 280 nm (UVC)—emitting device and increased maintenance and cleaning of the central heating, ventilation, and air conditioning (HVAC) systems should be ensured to promote the reduction of microbial contamination.info:eu-repo/semantics/publishedVersio
    corecore