A key role for microRNAs in the development and functional differentiation of $y\delta$ T cell subsets

Daniel Inácio¹, Tiago Amado¹, Marta Silva¹, Daniel Sobral², Carolina Cunha¹, Ana Pamplona¹, Francisco Enguita¹ Anita Q. Gomes^{1,3*} and Bruno Silva-Santos^{1*}

- ¹ Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
- ² Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ³ H&TRC Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- *Equal contributions

The ability of murine $y\delta$ T cells to rapidly produce the pro-inflammatory cytokines interleukin-17 (IL-17) or interferon-γ (IFN-γ) underlies their crucial roles in several (patho)physiological contexts. This capacity stems from a complex process of 'developmental pre-programming' in the thymus, after which a large fraction of $y\delta$ T cells migrate to peripheral sites already committed to producing either the IL-17 or IFN- γ . We have previously found that one microRNA, miR-146a, maintains peripheral $\gamma\delta$ T cell identity by inhibiting IFN-γ production by the IL-17-committed CD27⁻γδ T cell subset. To further and more globally address the role of microRNAs in effector $\gamma\delta$ T cell differentiation, we established a double reporter IL-17-GFP:IFN- γ -YFP mouse strain and isolated pure IL-17⁺ and IFN- γ + γ \delta T cell populations from the peripheral lymphoid organs to perform small RNA-sequencing. This allowed us to identify clearly distinct microRNA signatures associated with cytokine expression in $\gamma\delta$ T cells, from which we selected ten candidate microRNAs differentially expressed between IL-17 $^{+}$ and IFN- γ^{+} $\gamma\delta$ T cells to study further. We characterized the detailed expression pattern of each candidate microRNA in $\gamma\delta$ T cell subsets throughout mouse ontogeny and upon gain-of-function studies in in vitro cultures of γδ T cells. Our results indicate that while some microRNAs, such as miR-128-3p and miR181a-5p, regulate $y\delta$ T cell development in the thymus, other candidates, including miR-7a-5p, miR-139-5p, miR-322-5p and miR-450b-3p, modulate peripheral γδ T cell effector functions. More specifically, using a miR-181a deficient mouse model, we have found that miR-181a, highly expressed in immature γδ T cell subsets in the thymus, shifts the *in vivo* IL-17/IFN-γ balance towards the IL-17 pathway in neonatal life, which is further maintained in the periphery during adult life. On the other hand, miR-7a-5p and miR-139-5p, overexpressed in peripheral IFN- γ^+ γδ T cells, regulate peripheral γδ T cell effector functions, either acting as an IFN- γ auto-repressor (miR-139-5p) or promoting functional plasticity (miR-7a-5p). Finally, miR-322-5p and miR-450b-3p, overexpressed in IL-17⁺ γδ T cells, may have therapeutic potential by modulating the production of IFNy, whose levels are critical in anti-tumoral and anti-viral responses. These data demonstrate the impact of microRNAs on the differentiation and functional identity of effector $\gamma\delta$ T cell subsets, which may open new avenues for their manipulation in disease settings.