78 research outputs found

    Variation of the frictional anisotropy on ventral scales of snakes caused by nanoscale steps

    Get PDF
    The ventral scales of most snakes feature micron-sized fibril structures with nanoscale steps oriented towards the snake\u27s tail. We examined these structures by microtribometry as well as atomic force microscopy (AFM) and observed that the nanoscale steps of the micro-fibrils cause a frictional anisotropy, which varies along the snake\u27s body in dependence of the height of the nanoscale steps. A significant frictional behavior is detected when a sharp AFM tip scans the nanoscale steps up or down. Larger friction peaks appear during upward scans (tail to head direction), while considerably lower peaks are observed for downward scans (head to tail direction). This effect causes a frictional anisotropy on the nanoscale, i.e. friction along the head to tail direction is lower than in the opposite direction. The overall effect increases linearly with the step height of the micro-fibrils. Although the step heights are different for each snake, the general step height distribution along the body of the examined snakes follows a common pattern. The frictional anisotropy, induced by the step height distribution, is largest close to the tail, intermediate in the middle, and lower close to the head. This common distribution of frictional anisotropy suggests that snakes even optimized nanoscale features like the height of micro-fibrils through evolution in order to achieve optimal friction performance for locomotion. Finally, ventral snake scales are replicated by imprinting their micro-fibril structures into a polymer. As the natural prototype, the artificial surface exhibits frictional anisotropy in dependence of the respective step height. This feature is of high interest for the design of tribological surfaces with artificial frictional anisotropy

    Fabrication and evaluation of a nickel shim for large-area hot embossing of plant surface structures

    Get PDF
    Petal textures exhibit outstanding broadband and omnidirectional light harvesting properties on solar cells [1,2] + by choice of low surface energy materials their self-cleaning properties can be harnessed [3]. A hot embossing routine via robust nickel embossing tools has been developed for a large area fabrication of such textures

    Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals

    Full text link
    A 2-D photonic crystal was integrated experimentally into a thin-film crystalline-silicon solar cell of 1-{\mu}m thickness, after numerical optimization maximizing light absorption in the active material. The photonic crystal boosted the short-circuit current of the cell, but it also damaged its open-circuit voltage and fill factor, which led to an overall decrease in performances. Comparisons between modeled and actual optical behaviors of the cell, and between ideal and actual morphologies, show the global robustness of the nanostructure to experimental deviations, but its particular sensitivity to the conformality of the top coatings and the spread in pattern dimensions, which should not be neglected in the optical model. As for the electrical behavior, the measured internal quantum efficiency shows the strong parasitic absorptions from the transparent conductive oxide and from the back-reflector, as well as the negative impact of the nanopattern on surface passivation. Our exemplifying case, thus, illustrates and experimentally confirms two recommendations for future integration of surface nanostructures for light trapping purposes: 1) the necessity to optimize absorption not for the total stack but for the single active material, and 2) the necessity to avoid damage to the active material by pattern etching.Comment: Authors' postprint version - Editor's pdf published online on Nov.

    Absorbing photonic crystals for thin film photovoltaics

    Full text link
    The absorption of thin hydrogenated amorphous silicon layers can be efficiently enhanced through a controlled periodic patterning. Light is trapped through coupling with photonic Bloch modes of the periodic structures, which act as an absorbing planar photonic crystal. We theoretically demonstrate this absorption enhancement through one or two dimensional patterning, and show the experimental feasibility through large area holographic patterning. Numerical simulations show over 50% absorption enhancement over the part of the solar spectrum comprised between 380 and 750nm. It is experimentally confirmed by optical measurements performed on planar photonic crystals fabricated by laser holography and reactive ion etching.Comment: 6 pages. SPIE Photonics Europe pape

    Kawasaki syndrome: an intriguing disease with numerous unsolved dilemmas

    Get PDF
    More than 40 years have passed since Kawasaki syndrome (KS) was first described. Yet KS still remains an enigmatic illness which damages the coronary arteries in a quarter of untreated patients and is the most common cause of childhood-acquired heart disease in developed countries. Many gaps exist in our knowledge of the etiology and pathogenesis of KS, making improvements in therapy difficult. In addition, many KS features and issues still demand further efforts to achieve a much better understanding of the disease. Some of these problem areas include coronary artery injuries in children not fulfilling the classic diagnostic criteria, genetic predisposition to KS, unpredictable ineffectiveness of current therapy in some cases, vascular dysfunction in patients not showing echocardiographic evidence of coronary artery abnormalities in the acute phase of KS, and risk of potential premature atherosclerosis. Also, the lack of specific laboratory tests for early identification of the atypical and incomplete cases, especially in infants, is one of the main obstacles to beginning treatment early and thereby decreasing the incidence of cardiovascular involvement. Transthoracic echocardiography remains the gold-standard for evaluation of coronary arteries in the acute phase and follow-up. In KS patients with severe vascular complications, more costly and potentially invasive investigations such as coronary CT angiography and MRI may be necessary. As children with KS with or without heart involvement become adolescents and adults, the recognition and treatment of the potential long term sequelae become crucial, requiring that rheumatologists, infectious disease specialists, and cardiologists cooperate to develop specific guidelines for a proper evaluation and management of these patients. More education is needed for physicians and other professionals about how to recognize the long-term impact of systemic problems related to KS

    Propagation of an electromagnetic lightwave through isolated or periodically arranged openings

    No full text
    Abstract: The goal of this document is to provide a comprehensive description of the equations governing the propagation of an electromagnetic lightwave trough an opening. The latter is first considered as isolated and then integrated within a periodically arranged array. The material in which the openings are drilled is supposed to be non-magnetic (µmaterial=µair). No other specific assumptions are made on the optical indices of the different regions involved in order to keep this study as general as possible

    Hydrogenated amorphous silicon microstructuring for 0th order polarization elements at 1.0µm-1.1µm wavelength

    No full text
    International audienc
    corecore