10 research outputs found

    Material investigations to facilitate the applicability of microwave radar to energy-related wall structure analysis

    Get PDF
    Existing buildings often have low energy efficiency standards. For the preparation of retrofits, reliable high-quality data about built-in materials is required. Contactless measuring technologies, especially microwave radar, have the potential to enable an easy-to-apply and automatable way to analyse the structures and thermal properties of existing building walls, but the relationship between materials, their thermal properties, and their electromagnetic properties, such as the permittivity, is needed for its application. This article presents an analysis of the relationship between electromagnetic and thermal properties for a variety of building materials. Systematic measurements were performed for samples (burnt clay bricks, calcium silicate bricks, autoclaved aerated concrete and lightweight concrete) mainly originating from demolished buildings. The thermal conductivity, thermal capacitance, and dielectric permittivity were measured and the hypothesis of a correlation between permittivity and thermal parameters was partly confirmed. This information is a prerequisite for using microwave radar sensing technology to determine heat transfer coefficients of existing building walls. The next research step is the development of a corresponding measurement and evaluation method

    Long-term field and laboratory leaching tests of cemented radioactive wastes

    Get PDF
    Experiments with real and simulated radioactive cementitious wasteforms were set up to compare the leaching behaviour of cementitious wasteforms containing nuclear power plant operational waste in field and laboratory test conditions. Experiments revealed that the average annual Cs-137 leach rate in deionised water was about thirty-five times greater compared with the measured average value for the 1st year of the field test. Cumulative leached fraction of Cs-137 for 1st year (3.74%) was close to values reported in literature for similar laboratory experiments in deionised water, however more than two orders of magnitude higher than the 1st year leached fraction of Cs-137 in the repository test (0.01%). Therefore, to compare field and laboratory test results, a scaling factor is required in order to account for surface to volume factor difference, multiplied by a temperature factor and a leach rate decrease coefficient related to the ground water composition. (C) 2011 Elsevier B.V. All rights reserved

    Mechanical, Electrical and Magnetic Properties of Ferrogels with Embedded Iron Oxide Nanoparticles Obtained by Laser Target Evaporation: Focus on Multifunctional Biosensor Applications

    Get PDF
    Hydrogels are biomimetic materials widely used in the area of biomedical engineering and biosensing. Ferrogels (FG) are magnetic composites capable of functioning as magnetic field sensitive transformers and field assisted drug deliverers. FG can be prepared by incorporating magnetic nanoparticles (MNPs) into chemically crosslinked hydrogels. The properties of biomimetic ferrogels for multifunctional biosensor applications can be set up by synthesis. The properties of these biomimetic ferrogels can be thoroughly controlled in a physical experiment environment which is much less demanding than biotests. Two series of ferrogels (soft and dense) based on polyacrylamide (PAAm) with different chemical network densities were synthesized by free-radical polymerization in aqueous solution with N, N'-methylene-diacrylamide as a cross-linker and maghemite Fe2O3 MNPs fabricated by laser target evaporation as a filler. Their mechanical, electrical and magnetic properties were comparatively analyzed. We developed a giant magnetoimpedance (MI) sensor prototype with multilayered FeNi-based sensitive elements deposited onto glass or polymer substrates adapted for FG studies. The MI measurements in the initial state and in the presence of FG with different concentrations of MNPs at a frequency range of 1-300 MHz allowed a precise characterization of the stray fields of the MNPs present in the FG. We proposed an electrodynamic model to describe the MI in multilayered film with a FG layer based on the solution of linearized Maxwell equations for the electromagnetic fields coupled with the Landau-Lifshitz equation for the magnetization dynamics.This work was supported in part within the framework of the state task of the Ministry of Education and Science of Russia 3.6121.2017/8.9; RFBR grants 16-08-00609-a, 18-08-00178, and by the ACTIMAT ELKARTEK grant of the Basque Country Government. Selected studies were made at SGIKER Common Services of UPV-EHU and URFU Common Services. We thank I.V. Beketov, A.A. Chlenova, S.O. Volchkov, V.N. Lepalovskij, A.M. Murzakaev and A.A. Svalova for special support

    Magnetic properties and giant magnetoimpedance of surface modified Co-based amorphous ribbons with carbon covering

    No full text
    Fe3Co66Cr3Si16B12 and Fe6Co60Ni10Si14B10 amorphous ribbons were surface modified in toluene at room temperature. Such a treatment resulted in deposition of thin carbon-based layer. As a result of the carbon covering deposition the stress distribution in the near-surface layers was changed due to partial compensation of the initial quenching stresses. Comparative analysis of magnetic and magnetoimpedance properties of as-quenched and surface modified ribbons confirms changes in effective magnetic anisotropy as a result of surface treatment. An increase of the corrosion resistance of the ribbons with carbon covering can be useful for the development amorphous ribbon based magnetic biosensor

    Subsea Methane Hydrates: Origin and Monitoring the Impacts of Global Warming

    No full text
    The East Siberian Arctic shelf is the area where the largest natural gas reserves are concentrated. The formation of permafrost of the Arctic shelf during the Ice Age contributed to the emergence of a zone of stable existence of gas hydrates in the sedimentary layer, and subsequent flooding of the shelf led to its gradual degradation, the thawing of gas hydrates and the subsequent emissions of methane into the atmosphere. In the first part of the paper, we use mathematical modeling to study the processes of the formation of subsea permafrost on the Arctic shelf considering changes in the sea levels over the past 200 thousand years. Numerical simulations show the influence of climate warming up to 2200 on the degradation of subsea permafrost and the violation of the conditions for the stable existence of methane hydrates in bottom sediments using the example of the East Siberian shelf. The second part of the paper proposes a method for seismic monitoring of the state of gas hydrates based on a solution of multi-parameter inverse seismic problems. In particular, the degree of attenuation of seismic energy is one of the objective parameters for assessing the consolidation of gas hydrates: the closer they are to the beginning of decomposition, the higher the attenuation and, hence, the lower the quality factor. In this publication, we do not solve a multi-parameter inverse seismic problem for a real geological object. This would be impossible due to the lack of necessary data. Instead, we focus on substantiating the possibility of correct solutions for the problem of the reconstruction of the absorption and velocities for a viscoelastic medium in relation to the problem of monitoring the state of gas hydrate deposits. As noted in a range of publications, the thawing of gas hydrates leads to an increase in the fluid saturation of the geological medium followed by an increase in the absorption of seismic energy—that is, a decrease in the quality factor. Thus, the methods of seismic monitoring of the state of gas hydrates to predict the possibility of developing dangerous scenarios should be based on solving a multi-parameter inverse seismic problem. This publication is devoted to the presentation of this approach

    Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander-Shaped Elements for Sensor Application

    Get PDF
    Amorphous and nanocrystalline soft magnetic materials have attracted much attention in the area of sensor applications. In this work, the magnetoimpedance (MI) effect of patterned soft ferromagnetic meander-shaped sensor elements has been investigated. They were fabricated starting from the cobalt-based amorphous ribbon using the lithography technique and chemical etching. Three-turn (S1: spacing s = 50 μm, width w = 300 μm, length l = 5 mm; S2: spacing s = 50 μm, width w = 400 μm, length l = 5 mm) and six-turn (S3: s = 40 μm, w = 250 μm, length l = 5 mm; S4: s = 40 μm, w = 250 μm and l = 8 mm) meanders were designed. The ‘n’ shaped meander part was denominated as “one turn”. The S4 meander possesses a maximum MI ratio calculated for the total impedance ΔZ/Z ≈ 250% with a sensitivity of about 36%/Oe (for the frequency of about 45 MHz), and an MI ratio calculated for the real part of the total impedance ΔR/R ≈ 250% with the sensitivity of about 32%/Oe (for the frequency of 50 MHz). Chemical etching and the length of the samples had a strong impact on the surface magnetic properties and the magnetoimpedance. A comparative analysis of the surface magnetic properties obtained by the magneto-optical Kerr technique and MI data shows that the designed ferromagnetic meander-shaped sensor elements can be recommended for high frequency sensor applications focused on the large drop analysis. Here we understand a single large drop as the water-based sample to analyze, placed onto the surface of the MI sensor element either by microsyringe (volue range 0.5−500 μL) or automatic dispenser (volume range 0.1−50 mL)

    Operation of a Free Electron Laser in the Wavelength Range from the Extreme Ultraviolet to the Water Window

    No full text
    corecore