3,965 research outputs found

    Gravitationally enhanced depolarization of ultracold neutrons in magnetic-field gradients

    Get PDF
    Trapped ultracold neutrons (UCN) have for many years been the mainstay of experiments to search for the electric dipole moment (EDM) of the neutron, a critical parameter in constraining scenarios of new physics beyond the Standard Model. Because their energies are so low, UCN preferentially populate the lower region of their physical enclosure, and do not sample uniformly the ambient magnetic field throughout the storage volume. This leads to a substantial increase in the rate of depolarization, as well as to shifts in the measured frequency of the stored neutrons. Consequences for EDM measurements are discussed

    Interaction-assisted propagation of Coulomb-correlated electron-hole pairs in disordered semiconductors

    Full text link
    A two-band model of a disordered semiconductor is used to analyze dynamical interaction induced weakening of localization in a system that is accessible to experimental verification. The results show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the Coulomb-correlated electron-hole pair.Comment: 4 pages and 3 ps figure

    Glass phases of flux lattices in layered superconductors

    Full text link
    We study a flux lattice which is parallel to superconducting layers, allowing for dislocations and for disorder of both short wavelength and long wavelength. We find that the long wavelength disorder has a significant effect on the phase diagram -- it produces a first order transition within the Bragg glass phase and leads to melting at strong disorder. This then allows a Friedel scenario of 2D superconductivity.Comment: 5 pages, 1 eps figure, Revte

    Off-diagonal disorder in the Anderson model of localization

    Full text link
    We examine the localization properties of the Anderson Hamiltonian with additional off-diagonal disorder using the transfer-matrix method and finite-size scaling. We compute the localization lengths and study the metal-insulator transition (MIT) as a function of diagonal disorder, as well as its energy dependence. Furthermore we investigate the different influence of odd and even system sizes on the localization properties in quasi one-dimensional systems. Applying the finite-size scaling approach in conjunction with a nonlinear fitting procedure yields the critical parameters of the MIT. In three dimensions, we find that the resulting critical exponent of the localization length agrees with the exponent for the Anderson model with pure diagonal disorder.Comment: 12 pages including 4 EPS figures, accepted for publication in phys. stat. sol. (b

    Leukemia in AKR mice: A defined suppressor cell population expressing membrane-associated DNA

    Full text link

    Sums over geometries and improvements on the mean field approximation

    Full text link
    The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization. Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of dynamically triangulated quantum gravity, which suggests new possibilities to design sums over geometries for the specific purpose of obtaining improved mean field approximations to DD-dimensional theories. In the case of the Efetov theory, the dominant geometries are locally tree-like, and the sum over geometries diverges in a way that is similar to quantum gravity's divergence when all topologies are included. Expertise from the field of dynamically triangulated quantum gravity about sums over geometries may be able to remedy these defects and fulfill the Efetov theory's original promise. The other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals is generalized to nonnormal kernels.Comment: Accepted for publication in Physical Review D, probably in November 2007. At the reviewer's request, material was added which made the article more assertive, confident, and clear. No changes in substanc

    Magnetic trapping of ultracold neutrons

    Full text link
    Three-dimensional magnetic confinement of neutrons is reported. Neutrons are loaded into an Ioffe-type superconducting magnetic trap through inelastic scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low energy and in the appropriate spin state are confined by the magnetic field until they decay. The electron resulting from neutron decay produces scintillations in the liquid helium bath that results in a pulse of extreme ultraviolet light. This light is frequency downconverted to the visible and detected. Results are presented in which 500 +/- 155 neutrons are magnetically trapped in each loading cycle, consistent with theoretical predictions. The lifetime of the observed signal, 660 s +290/-170 s, is consistent with the neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review

    Structure of solar coronal loops: from miniature to large-scale

    Full text link
    We will use new data from the High-resolution Coronal Imager (Hi-C) with unprecedented spatial resolution of the solar corona to investigate the structure of coronal loops down to 0.2 arcsec. During a rocket flight Hi-C provided images of the solar corona in a wavelength band around 193 A that is dominated by emission from Fe XII showing plasma at temperatures around 1.5 MK. We analyze part of the Hi-C field-of-view to study the smallest coronal loops observed so far and search for the a possible sub-structuring of larger loops. We find tiny 1.5 MK loop-like structures that we interpret as miniature coronal loops. These have length of the coronal segment above the chromosphere of only about 1 Mm and a thickness of less than 200 km. They could be interpreted as the coronal signature of small flux tubes breaking through the photosphere with a footpoint distance corresponding to the diameter of a cell of granulation. We find loops that are longer than 50 Mm to have a diameter of about 2 arcsec or 1.5 Mm, consistent with previous observations. However, Hi-C really resolves these loops with some 20 pixels across the loop. Even at this greatly improved spatial resolution the large loops seem to have no visible sub-structure. Instead they show a smooth variation in cross-section. The fact that the large coronal loops do not show a sub-structure at the spatial scale of 0.1 arcsec per pixel implies that either the densities and temperatures are smoothly varying across these loops or poses an upper limit on the diameter of strands the loops might be composed of. We estimate that strands that compose the 2 arcsec thick loop would have to be thinner than 15 km. The miniature loops we find for the first time pose a challenge to be properly understood in terms of modeling.Comment: Accepted for publication in A&A (Jun 19, 2013), 11 pages, 10 figure
    • …
    corecore