3 research outputs found

    It's about time: A synthesis of changing phenology in the Gulf of Maine ecosystem

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Mills, K. E., Stamieszkin, K., Record, N. R., Hudak, C. A., Allyn, A., Diamond, A., Friedland, K. D., Golet, W., Henderson, M. E., Hernandez, C. M., Huntington, T. G., Ji, R., Johnson, C. L., Johnson, D. S., Jordaan, A., Kocik, J., Li, Y., Liebman, M., Nichols, O. C., Pendleton, D., Richards, R. A., Robben, T., Thomas, A. C., Walsh, H. J., & Yakola, K. It's about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography, 28(5), (2019): 532-566, doi: 10.1111/fog.12429.The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological‐human systems; and (d) potential phenology‐focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events. The most common response was earlier timing, observed in spring onset, spring and winter hydrology, zooplankton abundance, occurrence of several larval fishes, and diadromous fish migrations. Later timing was documented for fall onset, reproduction and fledging in Atlantic puffins, spring and fall phytoplankton blooms, and occurrence of additional larval fishes. Changes in event duration generally increased and were detected in zooplankton peak abundance, early life history periods of macro‐invertebrates, and lobster fishery landings. Reduced duration was observed in winter–spring ice‐affected stream flows. Two studies projected phenological changes, both finding diapause duration would decrease in zooplankton under future climate scenarios. Phenological responses were species‐specific and varied depending on the environmental driver, spatial, and temporal scales evaluated. Overall, a wide range of baseline phenology and relevant modeling studies exist, yet surprisingly few document long‐term shifts. Results reveal a need for increased emphasis on phenological shifts in the Gulf of Maine and identify opportunities for future research and consideration of phenological changes in adaptation efforts.This work was supported by the Department of the Interior Northeast Climate Adaptation Science Center (G14AC00441) for MDS, AJ, and KY; the National Science Foundation's Coastal SEES Program (OCE‐1325484) for KEM, ACT, MEH, and AA; the National Aeronautics and Space Administration (NNX16 AG59G) for ACT, KEM, NRR, and KSS; the USGS Climate Research and Development Program for TGH; National Science & Engineering Research Council of Canada, University of New Brunswick, Environment Canada, Sir James Dunn Wildlife Research Centre, and New Brunswick Wildlife Trust Fund for AD. We also thank the Regional Association for Research on the Gulf of Maine for support, and the Gulf of Maine Research Institute for hosting and providing in kind resources for a two day in‐person workshop in August 2016. We greatly appreciate contributions from K. Alexander, G. Calandrino, C. Feurt, I. Mlsna, N. Rebuck, J. Seavey, and J. Sun for helping shape the initial scope of the manuscript. We thank J. Weltzin and two anonymous reviewers for their constructive comments. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the views of the Northeast Climate Adaptation Science Center, U.S. Geological Survey, National Oceanographic and Atmospheric Administration, Fisheries and Oceans Canada or the US Environmental Protection Agency. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. None of the authors have conflicts of interest to declare in association with the contents of this manuscript

    Data for: Linking vertical movements of large pelagic predators with distribution patterns of biomass in the open ocean

    No full text
    <p>Many predator species make regular excursions from near-surface waters to the twilight (200-1,000 m) and midnight (1,000-3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model-predictions of deep prey layers in the North Atlantic Ocean to determine if prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals that traversed nearly 1.5 million km of pelagic ocean in >42,000 days, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.</p&gt
    corecore