135 research outputs found

    A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli.

    Get PDF
    Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often

    Neutrophil Paralysis in Plasmodium vivax Malaria

    Get PDF
    Plasmodium vivax is responsible for approximately 60–80% of the malaria cases in the world, and contributes to significant social and economic instability in the developing countries of Latin America and Asia. The pathogenesis of P. vivax malaria is a consequence of host derived inflammatory mediators. Hence, a better understanding of the mechanisms involved in induction of systemic inflammation during P. vivax malaria is critical for the clinical management and prevention of severe disease. The innate immune receptors recognize Plasmodium sp. and initiate a broad spectrum of host defense mechanisms that mediate resistance to infection. However, the innate immune response is the classic “two-edged sword”, and clinical malaria is associated with high levels of circulating pro-inflammatory cytokines. Our findings show that both monocytes and neutrophils are highly activated during malaria. Monocytes produced high levels of IL-1ÎČ, IL-6 and TNF-α during acute malaria. On the other hand, neutrophils were a poor source of cytokines, but displayed an enhanced phagocytic activity and superoxide production. Unexpectedly, we noticed an impaired chemotaxis of neutrophils towards an IL-8 (CXCL8) gradient. We proposed that neutrophil paralysis is in part responsible for the enhanced susceptibility to bacterial infection observed in malaria patients

    Macrophages recognize streptococci through bacterial single-stranded RNA

    No full text
    Group B streptococcus (GBS) is a leading cause of both neonatal sepsis and meningitis, two diseases that are characterized by inflammation. However, the manner in which GBS organisms are recognized by monocytes and macrophages is poorly understood. In this study, we report that the recognition of GBS and other Gram-positive bacteria by macrophages and monocytes relies on bacterial single-stranded RNA (ssRNA). ssRNA interacts with a signalling complex, which comprises the Toll-like receptor adaptors MyD88 and UNC-93B, but not the established MyD88-dependent ssRNA sensors. The role of ssRNA in the recognition of Gram-positive bacteria--leading to the induction of inflammatory cytokines--has potential implications for sepsis pathogenesis, diagnosis and treatment

    Viral Inhibitory Peptide of TLR4, a Peptide Derived from Vaccinia Protein A46, Specifically Inhibits TLR4 by Directly Targeting MyD88 Adaptor-Like and TRIF-Related Adaptor Molecule

    No full text
    TLRs are critical pattern recognition receptors that recognize bacterial and viral pathogen-associated molecular patterns leading to innate and adaptive immune responses. TLRs signal via homotypic interactions between their cytoplasmic Toll/IL-1R (TIR) domains and TIR domain-containing adaptor proteins. Over the course of evolution, viruses have developed various immune evasion strategies, one of which involves inhibiting TLR signaling pathways to avoid immune detection. Thus, vaccinia virus encodes the A46 protein, which binds to multiple TIR-domain containing proteins, ultimately preventing TLRs from signaling. We have identified an 11-aa-long peptide from A46 (termed viral inhibitor peptide of TLR4, or VIPER), which, when fused to a cell-penetrating delivery sequence, potently inhibits TLR4-mediated responses. VIPER was TLR4 specific, being inert toward other TLR pathways, and was active in murine and human cells and in vivo, where it inhibited LPS-induced IL-12p40 secretion. VIPER also prevented TLR4-mediated MAPK and transcription factor activation, suggesting it acted close to the TLR4 complex. Indeed, VIPER directly interacted with the TLR4 adaptor proteins MyD88 adaptor-like (Mal) and TRIF-related adaptor molecule (TRAM). Viral proteins target host proteins using evolutionary optimized binding surfaces. Thus, VIPER possibly represents a surface domain of A46 that specifically inhibits TLR4 by masking critical binding sites on Mal and TRAM. Apart from its potential therapeutic and experimental use in suppressing TLR4 function, identification of VIPER's specific binding sites on TRAM and Mal may reveal novel therapeutic target sites. Overall, we demonstrate for the first time disruption of a specific TLR signaling pathway by a short virally derived peptide. The Journal of Immunology, 2010, 185: 4261-427
    • 

    corecore