1,107 research outputs found
Periodic harmonic functions on lattices and points count in positive characteristic
This survey addresses pluri-periodic harmonic functions on lattices with
values in a positive characteristic field. We mention, as a motivation, the
game "Lights Out" following the work of Sutner, Goldwasser-Klostermeyer-Ware,
Barua-Ramakrishnan-Sarkar, Hunzikel-Machiavello-Park e.a.; see also 2 previous
author's preprints for a more detailed account. Our approach explores harmonic
analysis and algebraic geometry over a positive characteristic field. The
Fourier transform allows us to interpret pluri-periods of harmonic functions on
lattices as torsion multi-orders of points on the corresponding affine
algebraic variety.Comment: These are notes on 13p. based on a talk presented during the meeting
"Analysis on Graphs and Fractals", the Cardiff University, 29 May-2 June 2007
(a sattelite meeting of the programme "Analysis on Graphs and its
Applications" at the Isaac Newton Institute from 8 January to 29 June 2007
Non-malleable encryption: simpler, shorter, stronger
In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural âencode-then-encrypt-bit-by-bitâ approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our resultsâ(faster) construction from IND-CPA and domain extension from one-bit schemeâalso hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit
Account Management in Proof of Stake Ledgers
Blockchain protocols based on Proof-of-Stake (PoS) depend â by nature â on the active participation of stakeholders. If users are offline and abstain from the PoS consensus mechanism, the systemâs security is at risk, so it is imperative to explore ways to both maximize the level of participation and minimize the effects of non-participation. One such option is stake representation, such that users can delegate their participation rights and, in the process, form stake pools . The core idea is that stake pool operators always participate on behalf of regular users, while the users retain the ownership of their assets. Our work provides a formal PoS wallet construction that enables delegation and stake pool formation. While investigating the construction of addresses in this setting, we distil and explore address malleability, a security property that captures the ability of an attacker to manipulate the delegation information associated with an address. Our analysis consists of identifying multiple levels of malleability, which are taken into account in our paperâs core result. We then introduce the first ideal functionality of a PoS walletâs core which captures the PoS walletâs capabilities and is realized as a secure protocol based on standard cryptographic primitives. Finally, we cover how to use the wallet core in conjunction with a PoS ledger, as well as investigate how delegation and stake pools affect a PoS systemâs security
Making Classical Ground State Spin Computing Fault-Tolerant
We examine a model of classical deterministic computing in which the ground
state of the classical system is a spatial history of the computation. This
model is relevant to quantum dot cellular automata as well as to recent
universal adiabatic quantum computing constructions. In its most primitive
form, systems constructed in this model cannot compute in an error free manner
when working at non-zero temperature. However, by exploiting a mapping between
the partition function for this model and probabilistic classical circuits we
are able to show that it is possible to make this model effectively error free.
We achieve this by using techniques in fault-tolerant classical computing and
the result is that the system can compute effectively error free if the
temperature is below a critical temperature. We further link this model to
computational complexity and show that a certain problem concerning finite
temperature classical spin systems is complete for the complexity class
Merlin-Arthur. This provides an interesting connection between the physical
behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur
Secret-Sharing for NP
A computational secret-sharing scheme is a method that enables a dealer, that
has a secret, to distribute this secret among a set of parties such that a
"qualified" subset of parties can efficiently reconstruct the secret while any
"unqualified" subset of parties cannot efficiently learn anything about the
secret. The collection of "qualified" subsets is defined by a Boolean function.
It has been a major open problem to understand which (monotone) functions can
be realized by a computational secret-sharing schemes. Yao suggested a method
for secret-sharing for any function that has a polynomial-size monotone circuit
(a class which is strictly smaller than the class of monotone functions in P).
Around 1990 Rudich raised the possibility of obtaining secret-sharing for all
monotone functions in NP: In order to reconstruct the secret a set of parties
must be "qualified" and provide a witness attesting to this fact.
Recently, Garg et al. (STOC 2013) put forward the concept of witness
encryption, where the goal is to encrypt a message relative to a statement "x
in L" for a language L in NP such that anyone holding a witness to the
statement can decrypt the message, however, if x is not in L, then it is
computationally hard to decrypt. Garg et al. showed how to construct several
cryptographic primitives from witness encryption and gave a candidate
construction.
One can show that computational secret-sharing implies witness encryption for
the same language. Our main result is the converse: we give a construction of a
computational secret-sharing scheme for any monotone function in NP assuming
witness encryption for NP and one-way functions. As a consequence we get a
completeness theorem for secret-sharing: computational secret-sharing scheme
for any single monotone NP-complete function implies a computational
secret-sharing scheme for every monotone function in NP
Chosen-ciphertext security from subset sum
We construct a public-key encryption (PKE) scheme whose
security is polynomial-time equivalent to the hardness of the Subset Sum problem. Our scheme achieves the standard notion of indistinguishability against chosen-ciphertext attacks (IND-CCA) and can be used to encrypt messages of arbitrary polynomial length, improving upon a previous construction by Lyubashevsky, Palacio, and Segev (TCC 2010) which achieved only the weaker notion of semantic security (IND-CPA) and whose concrete security decreases with the length of the message being encrypted. At the core of our construction is a trapdoor technique which originates in the work of Micciancio and Peikert (Eurocrypt 2012
Incidence of human brucellosis in the Kilimanjaro Region of Tanzania in the periods 2007-2008 and 2012-2014
Background:
Brucellosis causes substantial morbidity among humans and their livestock. There are few robust estimates of the incidence of brucellosis in sub-Saharan Africa. Using cases identified through sentinel hospital surveillance and health care utilization data, we estimated the incidence of brucellosis in Moshi Urban and Moshi Rural Districts, Kilimanjaro Region, Tanzania, for the periods 2007â2008 and 2012â2014.
Methods:
Cases were identified among febrile patients at two sentinel hospitals and were defined as having either a 4-fold increase in Brucella microscopic agglutination test titres between acute and convalescent serum or a blood culture positive for Brucella spp. Findings from a health care utilization survey were used to estimate multipliers to account for cases not seen at sentinel hospitals.
Results:
Of 585 patients enrolled in the period 2007â2008, 13 (2.2%) had brucellosis. Among 1095 patients enrolled in the period 2012â2014, 32 (2.9%) had brucellosis. We estimated an incidence (range based on sensitivity analysis) of brucellosis of 35 (range 32â93) cases per 100 000 persons annually in the period 2007â2008 and 33 (range 30â89) cases per 100 000 persons annually in the period 2012â2014.
Conclusions:
We found a moderate incidence of brucellosis in northern Tanzania, suggesting that the disease is endemic and an important human health problem in this area
Experimental quantum tossing of a single coin
The cryptographic protocol of coin tossing consists of two parties, Alice and
Bob, that do not trust each other, but want to generate a random bit. If the
parties use a classical communication channel and have unlimited computational
resources, one of them can always cheat perfectly. Here we analyze in detail
how the performance of a quantum coin tossing experiment should be compared to
classical protocols, taking into account the inevitable experimental
imperfections. We then report an all-optical fiber experiment in which a single
coin is tossed whose randomness is higher than achievable by any classical
protocol and present some easily realisable cheating strategies by Alice and
Bob.Comment: 13 page
Predictable arguments of knowledge
We initiate a formal investigation on the power of predictability for argument of knowledge systems for NP. Specifically, we consider private-coin argument systems where the answer of the prover can be predicted, given the private randomness of the verifier; we call such protocols Predictable Arguments of Knowledge (PAoK).
Our study encompasses a full characterization of PAoK, showing that such arguments can be made extremely laconic, with the prover sending a single bit, and assumed to have only one round (i.e., two messages) of communication without loss of generality.
We additionally explore PAoK satisfying additional properties (including zero-knowledge and the possibility of re-using the same challenge across multiple executions with the prover), present several constructions of PAoK relying on different cryptographic tools, and discuss applications to cryptography
Risk factors for human brucellosis in northern Tanzania
Little is known about the epidemiology of human brucellosis in sub-Saharan Africa. This hampers prevention and control efforts at the individual and population levels. To evaluate risk factors for brucellosis in northern Tanzania, we conducted a study of patients presenting with fever to two hospitals in Moshi, Tanzania. Serum taken at enrollment and at 4â6 week follow-up was tested by Brucella microagglutination test. Among participants with a clinically compatible illness, confirmed brucellosis cases were defined as having a â„ 4-fold rise in agglutination titer between paired sera or a blood culture positive for Brucella spp., and probable brucellosis cases were defined as having a single reciprocal titer â„ 160. Controls had reciprocal titers < 20 in paired sera. We collected demographic and clinical information and administered a risk factor questionnaire. Of 562 participants in the analysis, 50 (8.9%) had confirmed or probable brucellosis. Multivariable analysis showed that risk factors for brucellosis included assisting goat or sheep births (Odds ratio [OR] 5.9, 95% confidence interval [CI] 1.4, 24.6) and having contact with cattle (OR 1.2, 95% CI 1.0, 1.4). Consuming boiled or pasteurized dairy products was protective against brucellosis (OR 0.12, 95% CI 0.02, 0.93). No participants received a clinical diagnosis of brucellosis from their healthcare providers. The under-recognition of brucellosis by healthcare workers could be addressed with clinician education and better access to brucellosis diagnostic tests. Interventions focused on protecting livestock keepers, especially those who assist goat or sheep births, are needed
- âŠ