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Abstract

Blockchain protocols based on Proof-of-Stake (PoS) depend — by nature — on the
active participation of stakeholders. If users are offline and abstain from the PoS con-
sensus mechanism, the system’s security is at risk, so it is imperative to explore ways to
both maximize the level of participation and minimize the effects of non-participation.
One such option is stake representation, such that users can delegate their participation
rights and, in the process, form “stake pools”. The core idea is that stake pool operators
always participate on behalf of regular users, while the users retain the ownership of their
assets. Our work provides a formal PoS wallet construction that enables delegation and
stake pool formation. While investigating the construction of addresses in this setting,
we distil and explore address malleability, a security property that captures the abil-
ity of an attacker to manipulate the delegation information associated with an address.
Our analysis consists of identifying multiple levels of malleability, which are taken into
account in our paper’s core result. We then introduce the first ideal functionality of a
PoS wallet’s core which captures the PoS wallet’s capabilities and is realized as a secure
protocol based on standard cryptographic primitives. Finally, we cover how to use the
wallet core in conjunction with a PoS ledger, as well as investigate how delegation and
stake pools affect a PoS system’s security.

1 Introduction

One of Bitcoin’s [35] novelties was combination of Proof-of-Work (PoW) with a hash-chain
to solve the consensus problem. As shown in subsequent works [25, 26, 36], these elements
enable Bitcoin to solve Byzantine Agreement (BA) under open participation. PoW is central
in identifying the eligible party that acts at any given time. Specifically, the consensus
participants, who generate blocks, are the miners which run the PoW mechanism. In turn,
the users manage private keys with which they control their assets by signing and publishing
transactions on the ledger. PoW-based ledgers observe a decoupling between miners and
users, as some miners may not own digital assets and many users don’t participate in mining.

The costly nature of PoW though gave rise to alternative mechanisms, most notably
Proof-of-Stake (PoS). In PoS, the eligible party, or “block minter”, is also a “stakeholder”
and is selected proportionally to its stake, i.e. its assets. Stakeholders can arbitrarily join
and leave, while also remaining pseudonymous. Thus, the assets of a PoS ledger are dual in
nature, acting as both transaction means and participation rights in the consensus protocol.
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This fundamental property of PoS systems raises two major considerations. First, using
the same key for multiple operations increases its attack surface. For example, using the same
key multiple times, e.g. to participate in consensus in a PoS setting, enables quantum at-
tacks, given that most implementations employ non-post-quantum secure signature schemes.
Furthermore, frequently using and keeping a key online counters security enhancements like
hardware wallets [2]. Second, users need to be constantly online and perform complicated
actions. In an environment where the majority of users are often offline and abstain from
the protocol’s execution, the security guarantees of the ledger are thus weakened.

The above issues are well known. For instance, the usage of multiple keys has been
proposed to address the first consideration1. Regarding reduced participation, a possible
countermeasure is to enable the delegation of participation in the PoS protocol. Users are
then organized in “stake pools”, i.e. consortiums managed by a single party, the pool’s
“leader”, that runs the PoS protocol as a delegate of the pool’s members. Stake pools also
bring efficiency advantages, since the set of stake pool leaders is typically smaller than the
entire stakeholders’ set and thus overall the system can operate with better cost efficiency,
since a smaller number of parties have to invest in running a transaction processing service.

PoS systems are increasingly gaining momentum. For instance, Cardano and EOS, both
PoS-based systems, are among the top cryptocurrencies by market capitalization2, while
Ethereum [41], the second-biggest blockchain system, slowly transitions to a PoS protocol,
Casper [8]. However, the literature lacks a comprehensive and formal treatment of a PoS
system’s account management. Due to the little systematization of PoS wallets, developers
often resort to ad hoc solutions which, as our malleability attack showcases, may be vulner-
able. Formalizing the PoS wallet is an important step, since wallets are the gateway through
which users interact with a distributed ledger and a core element of consensus itself. Our
research fills this gap and aims to act as a guideline for PoS systems’ designers, providing a
composable design which allows future research to use it in a black-box manner.

Finally, an important motivation is the low level of decentralization in PoS systems. Even
in cases where stakeholders are arguably in control, they choose their representatives from
a very narrow set of accounts; for instance, the EOS admits only 21 block producers at any
given time. Our work aims to alleviate centralization tendencies by enabling every user to
either participate on their own or assign their stake to any delegate of their choice.

1.1 Our Contributions and Roadmap

Our core contribution is a black-box, composable treatment of PoS wallets, which perform
account management in distributed ledgers. Our work aims to be the milestone that allows
the discussion and analysis of existing and future wallet designs and implementations.

First, we explore various requirements and distill the desiderata of a PoS wallet (Sec-
tion 2), on itself a novel contribution. In turn, we describe the malleability attack (Section 3).
Malleability is significant because it enables an adversary to artificially inflate its delegated
stake, potentially getting financial gains (e.g., in a PoS based financial system). Section 3
shows that malleability is such attack, enabling the adversary to acquire the delegation rights
of some assets against the decision of the assets’ owner.

A typical example of such adversary is a malicious stake pool leader. A pool leader is
a party which receives the delegation rights from other parties and participates in the PoS
protocol on their behalf. This adversary would operate under the natural assumption that
the reward amount, from the participation in the PoS protocol, is proportional to the stake

1For one such discussion see https://reddit.com/r/ethereum/comments/6idf2c.
2https://coinmarketcap.com [April 2020]
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delegated to the pool. This assumption is amplified by various incentive mechanisms which
mandate that larger stake pools receive greater rewards. Therefore, a successful attack
against delegation would enable the pool leader to artificially increase its rewards. Our
work shows a generalized malleability attack enables a malicious pool leader to achieve such
higher rewards. However, as proven in Theorem 1, as long as malleability is mitigated and
the utilized cryptographic primitives are sound, our wallet design is secure.

Our analysis explores various levels of protection against malleability, each offering se-
curity and performance guarantees suitable for a wide range of systems. Notably protection
against malleability comes with relatively small cost in the size of addresses; specifically, a
completely non malleable address scheme amounts to 129 bytes. The severity of malleability
is shown via potential threat against Cardano’s incentivized testnet, although no malleability
attacks have been recorded yet. Interestingly, malleability may be of independent interest in
any scheme which combines multiple attributes in a single identifier, for instance Decentral-
ized Identifiers (DIDs) [38].

Our second main contribution is a composable ideal functionality for the core of a Proof-
of-Stake wallet (Section 4). Our analysis is based on the UC Framework [9] and is inspired
by Canetti [10]. The ideal functionality FCoreWallet epitomizes in a concise way a PoS wallet’s
properties. We realize FCoreWallet in the form of the protocol πCoreWallet. Both the function-
ality and the protocol are highly parametric, enabling different address and wallet recovery
schemes to be employed. We also describe an address scheme which enables the recovery of
the wallet’s addresses and their balance given a master key and the ledger in O(n log(m))
time complexity, n being the wallet’s addresses and m all addresses in the ledger.

Finally, we combine the core wallet with a PoS ledger to complete staking operations, like
stake delegation and the formation of stake pools, as well as payments and block production
(in the context of a PoS system). We also analyze the effects of delegation and stake pools
on the security of a “vanilla” PoS system; our results confirm that, as long as the stake
majority is managed by honest parties, be it pools or stakeholders, a PoS system is secure.

1.2 Related Work

Cryptographic literature has seen a multitude of PoS protocols in the past years. The first
provably secure PoS protocol, which initiated a family of such protocols, was Ouroboros [32],
followed by Ouroboros Praos [16], Genesis [3], Crypsinous [31], and Hydra [11]. These pro-
tocols are similar to Bitcoin, in the sense that they offer eventual guarantees of liveness
and persistence, and cover issues including security, privacy, and availability. Another pop-
ular PoS protocol is Algorand [12, 27], which employs Byzantine Agreement to achieve the
necessary properties of a PoS setting with transaction finality in expected constant time.
Similarly, Snow White [6, 37] uses the notion of “robustly reconfigurable consensus”, which
is specially designed to cope with the lack of participation of users in the consensus protocol.
Our work is complementary to these PoS protocols, offering the wallet interface that can be
used in conjunction with them to construct a robust and secure PoS system; Appendix D
provides an instantiation of our scheme with Ouroboros Praos.

However, formal wallet research has been sparse and limited on PoW. The widely imple-
mented HD Wallet Standard BIP32 [42], based on deterministic wallets [33], was studied by
Gutoski and Stebila [30] under partial key leakage. We also employ hierarchical key gener-
ation akin to BIP32 for address generation and recovery. Our work also builds on Courtois
et al. [14], who investigated wallets and key management for Bitcoin [35]. Finally, Arapinis
et al. [2] analyze specialized hardware wallets under UC, although focused only on PoW.

Various PoS systems employ delegation with varied results. “Delegated PoS”, as deployed
on Steem [39], EOS [13], and (with some amendments) Tezos [29], enables the voting of
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delegates. However, all use a single key for both payment and voting. Also Steem and EOS
limit the number of potential delegates to 21 at any moment, while Tezos offers a more open
setting, where users can vote for any delegate of their choice, but requires a delegate to own
(and lock in a deposit) at least 8.25% of its delegated stake. On the other hand, Cardano3

(at present) pins all stake to a closed set of block production nodes, i.e. does not offer open
participation, while NEO4 enables only 7 consensus nodes, 5 of which are controlled by a
single entity. An alternative approach is taken by Decred [19], which uses a ticketing system,
i.e. stakeholders buy a ticket for participation akin to using a separate key. However, like
Tezos, it requires the locking of funds, i.e. it does not allow concurrent payments and staking.
Our work provides a formal model that, combined with a PoS framework, can help avoid the
security, centralization, and usability issues of these systems.

Finally, the game theoretic analysis of reward allocation and stake pool formation is an
interesting, though orthogonal, problem. Specifically, our work provides the cryptographic
infrastructure, on top of which a reward scheme (e.g. [7, 24]) can be deployed.

1.3 Preliminaries

Definitions and Notation. A ledger records and manages a set of fungible assets. For ex-
ample, a “satoshi” is the asset maintained by the Bitcoin ledger. The users create addresses
to interact with the ledger’s assets. An account, i.e. a set of addresses, is denoted by
Λ ⊆ {0, 1}p(λ) for a given, fixed polynomially bounded function p(·) and the security param-
eter λ. An attribute δ is an object which identifies a property, so an address is associated
with a number g of attributes of different types: i) public attributes are identifiable and
used without any interaction with the account’s owner; ii) semi-public attributes become
public when a transaction that spends from the address is issued; iii) private attributes
never become public. For instance, Bitcoin addresses comprise of the hash of a verification
key. Therefore, the verification key is semi-public, its hash is public, whereas the private key
which signs transactions is private. Finally, |α| denotes the length (in bits) of the object α,
A||B denotes the concatenation of two objects A and B, and head(C) denotes the last block
in a chain C, i.e. head(C||B) = B.

Threat Model and Adversarial Motivation. We assume that the adversary does not
control a majority of the stake; Otherwise attacking the PoS protocol would be trivial.
Instead, the adversary aims to inflate its stake by exploiting “staking operations” like dele-
gation as described previously. We also assume that the adversary is “adaptive”, i.e. it can
corrupt parties on dynamically while the protocol is being executed, and “rushing”, i.e. it
retrieves and (possibly) delays the honest parties’ messages before deciding its strategy.

2 General Desiderata

Before presenting our framework, we first identify the properties that the wallet in a PoS
setting should offer. This investigation is an important step in understanding the restrictions
in designing such systems, as well as evaluating the choices that a PoS protocol’s designer
should make, given that, as we show, a number of desirable properties may be conflicting.

In a PoS system each account manages a set of addresses, which own a non-negative
amount of cryptocurrency assets. A PoS system should offer at minimum two basic opera-
tions for each user’s account: i) paying and ii) staking. Addresses, simply put, are strings

3https://www.cardano.org/
4https://neo.org
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which have cryptocurrency balances associated with them. They may also contain metadata,
in the form of arbitrary attributes, which are useful for particular system operations. We
identify the following desiderata for addresses in a PoS setting:

Address Non-malleability: Given an address (and possibly also transactions associ-
ated with that address), it should be infeasible for an attacker to construct a different address
that shares only some of its attributes, most importantly its payment key.

Address Uniqueness: It should be unlikely for the address generation process to pro-
duce two equal addresses for different attributes, i.e. the addresses should be unique.

Short Addresses: The addresses should be relatively short, in order to be usable and
storage efficient.

Multiple Types of Addresses: It should be possible to construct more than one type
of addresses, with each type supporting a different subset of basic operations, e.g. to ban
some addresses from staking or delegating to a stake pool.

Multiple Device Support: An account should be able to exist on multiple devices
that share no joint internal state.

Address Recovery: An account should be able to identify its addresses, given the
ledger and the payment keys which it controls.

Privacy and unlinkability: Addresses should be indistinguishable and not publicly
linkable to the account which manages them.

An additional and equally important concern in the PoS setting is the “nothing at stake”
problem [23]. As opposed to PoW, in PoS a player can easily create blocks that extend
multiple parallel chains, an adversarial behavior which diverges from every PoS protocol’s
rules. Thus, an adversary may profit by attacking the system in this manner, even as
they own a large amount of the very assets which they attack. This problem becomes more
apparent in the cases of custodian services, which manage assets on behalf of their clients, but
assume no financial risk themselves. In this work, we sidestep this problem by introducing
“exile” addresses, i.e. addresses excluded from the protocol’s execution.

The two basic types of operations, i.e. payment and staking, can be performed inde-
pendently by two separate pieces of information, which we denote Ip and Is respectively.
The main advantage of this approach is that stake delegation does not require the use of Ip,
which is rather reserved only for transferring funds. Another desirable result is the ability to
recover all addresses given a master key, e.g. as implemented by HD Wallets [30, 42]. This
feature is particularly important in case the equipment which hosts the wallet is lost. We
summarize the above, with some additions, as follows:

Account Master Key: There should exist a master key (or seed), that can be used to
generate all of the account’s management information.

Staking and Payment Separation: Compromising the staking operation should not
affect the payment operation (and vice-versa).

Payment Key Information Safety: Apart from a cryptographic hash, no other in-
formation about the payment key Ip should be public prior to issuing a payment.

Key Exposure Mitigation: Ownership of the account’s assets and staking ability
should be recoverable in case the staking information Is is compromised.

Finally, the delegation mechanism boils down to the ability of a user to give the rights
over her stake to another user. This action should be distinguishable from other actions, like
payment, in order to protect the users and also facilitate automatic reward schemes to be
implemented by the ledger. The desiderata for the delegation mechanism are as follows:

Cost Effective Delegation: Stake delegation, as well as changing an account’s delega-
tion profile, should be cost effective.

Chain Delegation Restriction: A limit to the number of permitted chain delegation
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assignments may be enforced.
Delegation Verification: Participants in the system should be able to verify the status

of delegation assignments.

3 Address Malleability

Before designing our PoS wallet, a brief motivation behind researching malleability and its
relation to our setting is needed. Address malleability is similar to the malleability notions
that have been explored in existing literature (cf. [20]) and is intrinsically tied to address
generation. Malleability here is observed in the relation between the payment and staking
keys. Thus, this family of malleability attacks enables an adversary to construct addresses
on behalf of honest users, which may correspond to the honest payment keys and adversarial
staking keys. Such addresses are called forgeries. A forgery is successful if an honest wallet
accepts a forgery as its own and can spend its assets, whereas it fails if it is impossible to
send money to it or funds that it owns are unspendable.

We assume two types of adversaries, depending on the information to which they have
access. The first is the network adversary, who can view the ledger’s contents and the
addresses produced by an honest party. The second is the targeting adversary, who accesses
the same information as the network adversary, as well as the semi-public attributes of the
addresses of the “victim”, i.e. the honest user for which it attempts to produce a forgery. We
showcase the different types of adversaries with the following example. Assume a company
C that receives regular payments in cryptocurrencies. For security reasons, C stores the
private keys of its addresses on an offline server, whereas the public keys are stored online, in
order to easily compute and share new addresses with its clients. An adversary that pretends
to be a client is a “network” adversary, i.e. may access some of C’s addresses. Instead, an
adversary that infiltrates the online server and accesses the public keys is “targeting”. If
the system does not protect against targeting adversaries, then malleability may be used to
mount a covert attack, i.e. to obtain the staking rights of C’s assets without raising flags.

The formal analysis of malleability takes the form of the malleability predicate M . The
predicate returns 1 or 0 to denote whether an address is valid or not. We stress that, in
this context, a valid address is either honestly-generated or is a successful forgery. The fully
non-malleable construction is instantiated with the predicate ML,T,P

NM of Algorithm 1, while
Appendix A covers the other malleability levels. The predicate verifies that an recipient’s
address has been generated by some party following the correct process. Upon issuing a
transaction (resp. upon verifying), the malleability predicate checks the address of the
receiver (resp. sender) to ensure its legitimate and thus if the transaction is acceptable.

Malleability attacks depend on who can mount them and to which extent. We identify
these levels, ranging from full, with no inherent protection against malleability, to non-
malleable. These levels are distinguished based on the following properties: i) the adversarial
types, i.e. whether the adversary is on the network level or targeting, as described above;
ii) “self-verification”, i.e. whether a wallet can recognize a forgery for one of its own addresses;
iii) “cross-verification”, i.e. whether a wallet can recognize a forgery for any address.

Although high levels of protection are more desirable, there is a performance trade-
off. Specifically, a fully malleable address scheme typically produces short addresses, thus is
suitable for applications focused on performance rather than security. In contrast, a security-
oriented project would rather aim for the higher levels of malleability protection. Following
we briefly describe each level and offer indicative address implementations, assuming that
SHA256 is the employed hash function and the signature scheme is ECDSA on secp256r1. We
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Algorithm 1 The fully non-malleable predicate.

function ML,T,P
NM (aux, α)

switch “aux” do
case “issue”

if ∃P ′ such that ∃lα : (α, lα) ∈ LP ′ then
return 1

end if
case “verify” OR “recover”

if ∃lα : (α, lα) ∈ LP then
return 1

end if
return 0

end function

also assume that each address is associated with two keys, (vks, sks) for staking and (vkp, skp)
payments, the latter also enabling its recovery; with foresight we note that all schemes are
suitable for usage with the core-wallet protocol of Section 4.2.

Level 1, Full Malleability: Address schemes of this level enable forgeries from both
network and targeting adversaries. To accept an address, a wallet only checks whether it
controls its payment key. For instance, the address is constructed as the concatenation
of the hashes of the payment and staking keys: α = H(vkp)||H(vks). Thus, given α, an
adversary can replace H(vks) with H(vks′), for some adversarial key H(vks′). The length of
fully malleable addresses is 64 bytes, i.e. the sum of two hashes.

Level 2, Ex Post Malleability: This level prohibits network adversaries, though tar-
geting adversaries can create successful forgeries. Ex post malleable addresses are constructed
as follows: α = H(vkp||vks||ht)||H(vks)||ht. The first part of the address is the hashed root
of its attribute tree. The attributes are the payment key vkp, the staking key vks, and the
recovery tag ht (for an extended discussion on the generation of recovery tags we refer to
Section 4.4 and Appendix C.1). Now, given only α an attacker can no longer replace vks
since, in doing so, the first part of the address would be invalidated. However, if the attacker
also knows the payment key vkp, it can produce successful forgeries. The length of ex post
malleable addresses is 96 bytes, i.e. the sum of three hashes.

Level 3, “Sink” Malleability: Sink malleable address schemes protect against both
network and targeting adversaries. Now, a forgery is always rejected by the wallet and its
funds are “burnt”. Intuitively, imagine transactions as a graph, where the graph’s nodes are
addresses and its edges are transactions. Forgeries are “sinks”, which trap all funds sent to
them and no transaction can spend from them. Thus, a wallet can identify forgeries for one
of its payment keys, but cannot identify whether an address with a key that it does not own
is a forgery. To construct a sink malleable address, the payment key certifies the staking
key as follows: α = H(vkp)||vks||Sign(skp, vks). Clearly, even if an attacker knows the public
payment key vkp, it cannot create a forgery, unless it forges a signature. Since the ECDSA
signature is 512 bits, the address is 128 bytes.

Level 4, Non-Malleability: Non-malleable address schemes offer the highest level of
protection. Now, any party can identify whether any address is honestly-generated or is a
forgery. Our non-malleable proposal achieves this by utilizing the signature of the sink mal-
leable scheme while also revealing the public payment key: α = vkp||H(vks)||Sign(skp, vks).
Therefore, the address’s length is about 129 bytes (33 bytes for the payment key, 32 bytes
for the hash, and 64 for the signature). We also refer to Appendix C.2 for a full security
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Malleability

Level

Network

protection

Targeting

protection

Self-

verification

Cross-

verification

Address length

(bytes)

1. Full 7 7 7 7 64

2. Ex post 3 7 7 7 96

3. Sink 3 3 3 7 128

4. Non-malleable 3 3 3 3 129

Table 1: Comparison of the malleability levels, from malleable to fully non-malleable.
The comparison is based on the types of adversaries that can successfully forge an address,
the ability of a wallet to identify a forgery, and the address length. We note that the non-
malleable scheme reveals the public payment key by default, whereas all other schemes reveal
only its hash (and the public key is revealed only upon conducting a transaction).

analysis of this scheme.
The user also needs to reveal the keys themselves to conduct payments and staking. In all

cases the user reveals the staking key, whereas in all levels except 4 they need to also reveal
the payment key, in addition to publishing the address. Thus the overall storage requirement
is |α|+ |vkp|+ |vks|.

Table 1 summarizes the above comparison. As expected, higher levels of malleability pro-
tection induce a higher performance cost, in terms of address length. Additionally, the fully
non-malleable scheme reveals the public key by default, which opens the system to quantum
attacks, assuming a non-post-quantum secure signature scheme like ECDSA is employed.
Future work will explore the usage of non-interactive zero-knowledge proofs of knowledge,
which enable the same level of security without revealing the public key.

Address malleability is adjacent, though more severe than, transaction malleability in
Bitcoin [18, 1]. The latter enables an attacker to modify a transaction, thus changing its
identifier (i.e. its hash), such that the issuer is led to believe that the original transaction is
unconfirmed. Although this attack may lead to loss of funds (e.g. as claimed in the Mt. Gox
incident [18]), it does not directly compromise the ledger’s consensus mechanism, due to the
decoupling of the mining and the transaction processes. In contrast, address malleability
directly affects a PoS ledger’s security, since an attacker can use it to artificially inflate their
delegated stake to the extent of (potentially) violating the honest majority assumption.

Finally, we present a real-world case of the address malleability hazard. On Decem-
ber 2019, Cardano released its Incentivized Testnet5, a testnet aimed at enabling Cardano
stakeholders to create stake pools and delegate their stake on a preliminary level. In ac-
cordance to our setting, addresses are associated with two keys, for payments and staking
operations, nevertheless addresses are fully malleable; specifically, they are constructed as
the (Bech32-encoded) concatenation of the payment and staking keys6, as in our malleable
scheme. Although no real-world attacks have been recorded yet, our paper raises awareness
about their possibility and the mitigation strategies that are available for practical systems.

5https://staking.cardano.org/ [April 2020]
6The Rust code of Cardano’s testnet node is open source on Github. Address construction and key

concatenation can be found at https://git.io/Jvppa and https://git.io/Jvppr.
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4 The Core Proof-of-Stake Wallet

We now focus on defining the core of a PoS wallet. With malleability in mind, we first build
the Core-Wallet ideal functionality, i.e. the security definition of the basic key-management
operations that PoS wallet should complete. Following, we realize the functionality via a
protocol which can be constructed using standard cryptographic primitives. The Core-Wallet
protocol employs a number of sub-routines and, as we show in Theorem 1, securely realizes
the ideal functionality, as long as a set of standard assumptions are ensured. By the end
of the section we briefly discuss the construction of addresses and wallet recovery, i.e. the
identification of the wallet’s addresses and its balance given its private keys and the public
ledger. Firstly though, let us outline the core wallet’s inner workings:

Initialization: The wallet is bootstrapped during the initialization phase. In the ideal
functionality FCoreWallet, various global lists are initialized. In the protocol πCoreWallet, at this
stage the master secret key is created, i.e. the wallet’s seed which will be used to generate
all keys and addresses; πCoreWallet also maintains lists for the wallet’s keys.

Address Generation: During address generation, FCoreWallet leaks to the adversary the
new address; in fact the adversary chooses the address, which is then checked by FCoreWallet

for validity, e.g. to ensure that it is unique. This choice implies that the adversary knows the
addresses of the wallet, i.e. there is no address privacy; future versions of the core wallet will
aim to provide privacy guarantees. The address is then linked with a list of attributes, i.e.
the payment and staking keys and helper attributes like the recovery tag, and are stored in
the global arrays. In πCoreWallet, address generation is done by the helper function GenAddr,
which is given the child attributes which are generated using the master key.

Wallet Recovery: Wallet recovery is the process of retrieving the recovery tags of the
wallet’s first i addresses. In FCoreWallet these attributes are maintained in a list, whereas in
πCoreWallet they are reconstructed using the master key and corresponding indices.

Address Recovery: This interface enables a wallet to verify whether an address α was
among its first i constructed addresses; the verification process is as above. Interestingly,
during address recovery the malleability predicate is also used; thus, depending on the level
of malleability that we want to achieve, at this point the wallet may accept forgeries as valid.

Issue Transaction: To issue a transaction, the wallet receives the sender and receiver
addresses and the amount of assets to be transferred. Following the UC model of sig-
natures [10], it retrieves from the adversary the signature object and, after a few checks
(including for malleability), registers the signed transaction. Thus, although the adversary
can partially affect the signature’s structure, FCoreWallet ensures that security is maintained.
On the protocol’s side, transaction issuing is achieved by simply signing the transaction with
the payment key that corresponds to the sender’s address.

Verify Transaction: Transaction verification is also similar to signature verification.
Specifically, FCoreWallet ensures that i) the malleability level is preserved (using the predi-
cate), and ii) completeness, unforgeability, and consistency are ensured, i.e. a secure digital
signature scheme’s needed properties. On the other hand, πCoreWallet simply uses the Verify
algorithm of the employed signature scheme to check the transaction’s signature’s validity.

Issue and Verify Staking: Issuing and verification of staking actions, e.g. the certifi-
cates which we explore in Section 5, is achieved similarly to payment transactions, with the
usage of staking keys instead of payment keys.

4.1 The Core-Wallet Functionality

The goal of the ideal functionality is to distill in a concise way the necessary properties of
a PoS wallet and provide a formal model as a base of discussion. The ideal functionality
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FCoreWallet, inspired by Canetti [10], interacts with the ideal adversary S and a set of parties
denoted by P and is parameterized by the malleability predicate M(·, ·, ·) → {0, 1}. It
also keeps the, initially empty, lists S of staking actions and T of transactions. Without
loss of generality, we assume that, given a list of attributes lα,Gen = (δ1, . . . , δg), δ1 is
the staking key’s information and δ2 is the recovery tag, which is further investigated in
Appendix C.1. We note that the functionality distinguishes the addresses in three types, the
“base”, “pointer”, and “exile” addresses, each with a specific utility. Briefly, base addresses
bootstrap a wallet, pointer addresses are shorter, and exile addresses help bypass the nothing-
at-stake problem described in Section 2.

Functionality FMCoreWallet

Initialization: Upon receiving (Init, sid) from P ∈ P, forward it to S and wait for
(InitOk, sid). Then initialize the empty lists LP of addresses and attribute lists and
KP of staking keys, and send (InitOk, sid) to P .
Address Generation: Upon receiving (GenerateAddress, sid, aux) from P ∈ P,
forward it to S. Upon receiving (Address, sid, α, lα) from S, parse lα as (δ1, . . . , δg)
and ∀P ′ ∈ P check if ∀(α′, (δ′1, . . . , δ′g)) ∈ LP ′ it holds that α 6= α′, δ′2 6= δ2, and
∀j ∈ [i, . . . , g] : δ′j 6= δj , i.e. the address, recovery tag, and private attributes are unique.
If so, then:
• if aux = (“base”), check that ∀(α′, (δ′1, . . . , δ′g)) ∈ LP : δ′1 6= δ1,
• else if aux = (“pointer”, vks), check that δ1 = vks,
• else if aux = (“exile”), check that δ1 = ⊥.

If the checks hold or P is corrupted, then insert (α, lα) to LP and return (Address, sid, α)
to P . If aux = (“base”) also insert δ1 to KP and return (StakingKey, sid, δ1) to P .
Wallet Recovery: Upon receiving (RecoverWallet, sid, i) from P ∈ P, for the first
i elements in LP return (Tag, sid, δ2).
Address Recovery: Upon receiving (RecoverAddr, sid, α, i) from P , if (α, l) is one
of the first i elements of LP orM(LP , “recover”, α) = 1, return (RecoveredAddr, sid, α).
Issue Transaction: Upon receiving (Pay, sid,Θ, αs, αr,m) from P ∈ P, if ∃lα : (αs, lα) ∈
LP forward it to S. Upon receiving (Transaction, sid, tx, σ) from S, such that tx =
(Θ, αs, αr,m), check if ∀(tx′, σ′, b′) ∈ T : σ′ 6= σ, (tx, σ, 0) 6∈ T , and M(LP , “issue”, αr) =
1. If all checks hold, then insert (tx, σ, 1) to T and return (Transaction, sid, tx, σ).
Verify Transaction: Upon receiving (VerifyPay, sid, tx, σ) from P ∈ P, with tx =
(Θ, αs, αr,m) for a metadata string m, forward it to S and wait for a reply message
(VerifiedPay, sid, tx, σ, φ). Then:
• if M(LP , “verify”, αs) = 0, set f = 0
• else if (tx, σ, 1) ∈ T , set f = 1
• else, if P is not corrupted and (tx, σ, 1) 6∈ T , set f = 0 and insert (tx, σ, 0) to T
• else, if (Θ, αs, αr,m, σ, b) ∈ T , set f = b
• else, set f = φ.

Finally, send (VerifiedPay, sid, tx, σ, f) to P .
Issue Staking: Upon receiving (Stake, sid, stx) from P , such that stx = (vks,m) for
a metadata string m, forward the message to S. Upon receiving (Staked, sid, stx, σ)
from S, if ∀(stx′, σ′, b′) ∈ S : σ′ 6= σ, (stx, σ, 0) 6∈ S, and vks ∈ KP , add (stx, σ, 1) to S
and return (Staked, sid, stx, σ) to P .
Verify Staking: Upon receiving (VerifyStake, sid, stx, σ) from P ∈ P, forward it to
S and wait for (VerifiedStake, sid, stx, σ, φ), with stx = (vks,m). Then find Ps, such
that vks ∈ KPs , and:
• if (stx, σ, 1) ∈ S, set f = 1

10



• else if Ps is not corrupted and (stx, σ, 1) 6∈ S, set f = 0 and insert (stx, σ, 0) to S
• else if exists an entry (stx, σ, f ′) ∈ S, set f = f ′

• else set f = φ and insert (stx, σ, φ) to S.
Finally, return (VerifiedStake, sid, stx, σ, f) to P .

We remark that, although FCoreWallet satisfies our requirements, it does not offer any
type of forward security in the sense of Bellare and Miner [5]. Thus, it does not fit protocols
which require stronger security guarantees, e.g. Ouroboros Praos [16], which relies (among
other primitives) on a forward secure digital signature scheme to provide security guarantees
against fully-adaptive corruption in a semi-synchronous setting. Additionally, it does not
cover protocols that allow arbitrary parties to operate the address generation interface,
instead of restricting it to the wallet’s owner, e.g. Cryptonote [40].

4.2 The Core-Wallet Protocol

We now introduce the core-wallet protocol πCoreWallet, which realizes FCoreWallet. πCoreWallet

abstracts the address generation process and is parameterized with a number of helper func-
tions. parsePubAttrs returns an address’s public attributes [vks, wrt, aux]. HKeyGen and
RTagGen produce the child key pair and the recovery tag respectively. We also assume a
signature scheme Σ =〈KeyGen,Verify,Sign〉 (cf. [28]). πCoreWallet interacts with Po, i.e. the
wallet’s owner, and maintains the, initially empty, lists PK of payment keys and SK of
staking keys. Theorem 1, a core result of this paper, proves πCoreWallet’s security w.r.t.
FCoreWallet. For readability purposes, we drop the generic notation δ and instead use names
representative of each attribute; the staking and the payment keys are now (vks, sks) and
(vkp, skp) respectively. The public attributes d = [vks, wrt, aux] comprise of the public stak-
ing key, the recovery tag, and the address’s auxiliary information, which identifies its type.

Protocol πCoreWallet

Initialization: Upon receiving (Init, sid) from Po, set msk
$←− {0, 1}λ and return

(InitOk, sid) to Po.
Address Generation: Upon receiving (GenerateAddress, sid, aux) from Po, com-
pute the index and “child” attributes as follows: i) pick i← I; ii) compute (vkpc, skpc) =
HKeyGen(〈msk, “payment”, i〉); iii) compute wrt = RTagGen(vkpc). If aux = (“base”)
compute (vksc, sksc) = HKeyGen(〈msk, “staking”, i〉), else if aux = (“pointer”, vks) then
find (vksc, sksc) ∈ K : vks = vksc, else if aux = (“exile”) set (vksc, sksc) = (⊥,⊥). Then
insert the list lα = 〈vksc, wrt, aux, vkpc, skpc, sksc〉 to L, generate the new address α as
α = GenAddr(〈aux, vksc, vkpc, wrt〉), and insert the tuple 〈α, (vkpc, skpc)〉 to PK. Then
return (Address, sid, α) to Po. If aux = “base” also insert (vksc, sksc) to SK and send
the message (StakingKey, sid, vksc) to Po.
Wallet Recovery: Upon receiving the message (RecoverWallet, sid, imax) from
Po, ∀i ∈ I : i < imax set (vkpi, skpi) = HKeyGen(〈msk, “payment”, i〉) and return
(Tag, sid,RTagGen(vkpi)).
Address Recovery: Upon receiving (RecoverAddr, sid, α, imax) from Po, parse the
address’s attributes (vks, wrt, aux) = parsePubAttrs(α). If exists i ∈ I : i < imax,
where (vkpi, skpi) = HKeyGen(〈msk, “payment”, i〉) and RTagGen(vkpi) = wrt, return
(RecoveredAddr, sid, α).
Issue Transaction: Upon receiving (Pay, sid,Θ, αs, αr,m) from Po, find an entry
〈αs, (vkp, skp)〉 ∈ PK and send (Transaction, sid, tx, Sign(skp, tx)) to Po, such that
tx = (Θ, αs, αr,m).
Verify Transaction: Upon receiving a message (VerifyPay, sid, tx, σ) from Po, with
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tx = (Θ, αs, αr,m) for some metadata string m, find an entry 〈αs, (vkp, skp)〉 in PK and
return (VerifiedPay, sid, tx, σ,Verify(tx, σ, vkp)) to Po.
Issue Staking: Upon receiving (Stake, sid, stx) from Po such that stx = (vks,m), find
(vks, sks) ∈ SK and return (Staked, sid, stx, Sign(sks, stx)).
Verify Staking: Upon receiving a message (VerifyStake, sid, stx, σ) from party Po,
where stx = (vks,m) for some metadata m, find an entry (vks, sks) ∈ SK and return
(VerifiedStake, sid, stx, σ,Verify(stx, σ, sks)).

4.3 Security of the Core-Wallet Protocol

Similar to FCoreWallet, πCoreWallet accommodates various address schemes and different levels
of malleability. Next we present the definitions of the properties needed to prove its secu-
rity, while Theorem 1 proves that πCoreWallet securely realizes FCoreWallet assuming its sub-
processes satisfy these definitions. The proof (Appendix B.4) is heavily based on Canetti [10]
for the signature’s properties, while the address properties (cf. Definitions 1, 2, 3, 4) cover
malleability and address generation.

Definition 1 (Collision resistance). A function H is collision resistant if, given h← {0, 1}l,
it should be computationally infeasible for a probabilistic polynomial algorithm to find a value
x such that h = H(x).

Definition 2 (Address collision resistance). Analogously to hash functions, GenAddr is col-
lision resistant when it is infeasible to produce two different attribute lists li = (δi1, . . . , δ

i
g)

for i ∈ {1, 2}, i.e. they differ in at least one attribute like ∃j ∈ [1, g]: δ1
j 6= δ2

j , such that
GenAddr(l1) = GenAddr(l2), after running GenAddr(·) a polynomial number of times.

Definition 3 (Hierarchical Key Generation). Given a key generation function HKeyGen(·)
and a signature scheme Σ = 〈KeyGen,Verify, Sign〉, HKeyGen(·) is hierarchical for Σ if, for
all i, the distribution of keys produced by HKeyGen(i) is computationally indistinguishable
from the distribution of keys produced by KeyGen.

Definition 4 (Non-malleable attribute address generation). Let L be a distribution of at-
tribute lists and l ← dom(L) an attribute list, such that dom(L) = ∆1 × . . . ×∆g. Let the
first attributes of l δ1, . . . , δi relate to a property over which we define non-malleability. Given
an address α, it is infeasible for an adversary A to produce valid forgeries, i.e. acceptable
addresses with the same payment key as α, without access to α’s private attributes, even with
access to the address’s metadata, i.e. its semi-public attributes. Concretely, with Addrs the
list of addresses queried by A to the oracle GenAddrd(·), it holds that:

Pr

[
l = (δ1, . . . , δg), α← GenAddr(l),

AGenAddrd(·),GenMetad(·)(δi, . . . , δg)→ (α′, δ′i, . . . , δ
′
g)

:

(GenAddrd(δ′i, . . . , δ
′
g) = α′)∧ (α′ 6= α)∧ (α′ /∈ Addrs)

]
≤ negl(λ)

for probabilities over GenAddr’s randomness, the PPT adversary A, and l.

Theorem 1. Let the generic protocol πCoreWallet be parameterized by a signature scheme Σ =
〈KeyGen,Verify,Sign〉 and the RTagGen, HKeyGen, and GenAddr functions. Then πCoreWallet

securely realizes the ideal functionality FMSM
CoreWallet if and only if Σ is EUF-CMA, GenAddr is

collision resistant and attribute non-malleable (cf. Definitions 2 and 4), RTagGen is collision
resistant (cf. Definition 1), and HKeyGen is hierarchical for Σ (cf. Definition 3).
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4.4 Address Construction and Wallet Recovery

Following the protocol’s definition, we now provide a brief overview of the address generation
and recovery. A detailed discussion on address construction, including a sink malleable
scheme, which can be used in conjunction with πCoreWallet, is available on Appendix C.

For the construction of a new, “child” address we utilize a hierarchical address genera-
tion scheme (cf. hierarchical deterministic wallets [33]). The child key, which is produced by
the master key and an index i, is given to the address generation function GenAddr, which
outputs the new address. The wallet produces three types of addresses with different staking
information. The stake of a base address is controlled by a new staking key. A pointer ad-
dress’s staking key is associated with an existing key which is published in a past transaction
in the ledger. Finally, an exile address is not associated with any staking key, thus cannot
perform staking and its assets are automatically removed from the PoS protocol’s execution.

Each address also contains the recovery tag wrt, a public parameter which allows the
identification of addresses. The tag is created by the function RTagGen and links the address
to its attributes without revealing its semi-public attributes, e.g. the payment key. During
recovery, a wallet retrieves from the ledger its addresses and their balance, using its master
key. Specifically, we assume a well-defined list of domains, each having a finite cardinality.
The wallet initially picks indexes from the first domain, constructs the recovery tag for each,
and compares it to the ledger’s addresses. After identifying all addresses from the indexes of
the first domain, it proceeds with the second and so forth. If, for some domain, no index is
associated with a ledger’s address, recovery halts. The complexity of recovery is O(n log(m)),
n being the number of the wallet’s addresses and m the number of the ledger’s addresses.

5 Integration of the Core-Wallet with PoS Consensus

Combining the core wallet with a Proof-of-Stake ledger we can build a full PoS wallet. We
abstract the PoS ledger in the following functions and properties:

i) Fθ(·): given an address α, Fθ returns the assets that α owns
ii) FΦ,tx(·): FΦ,tx outputs the fees Φ of publishing a transaction on the ledger
iii) Fotx(·): given an address, Fotx outputs its outgoing transactions
iv) Φreg: the cost of stake pool registration
v) αreg: a special address that pertains to pool registration
vi) FPoS,player(·): given a chain C, FPoS,player outputs the next PoS participant

The above take various forms in distributed ledgers. Given the existence of various flavors
of PoS protocols (cf. Section 1.2), we can this model design a wallet that is generic enough;
Appendix D also describes the interaction with a specific PoS protocol, Ouroboros Praos [17].
Following, we explore how payments and stake-related actions on a PoS ledger are conducted
via the core wallet. Also we evaluate the impact of stake pools on the execution and security
assumptions of a typical PoS protocol, various modes of operation for enhanced safety and
privacy, as well as two noteworthy attack vectors.

5.1 The PoS Wallet’s Actions

A PoS wallet performs two types of actions, payment and staking. Although payment, i.e.
the transfer of assets between accounts, is straightforward, staking depends on the inner-
workings of each PoS protocol, so here we cover only delegation and stake pool formation.

Payment: Payment is the transfer of Θ assets from a sender’s address αs to a receiver’s
address αr. The wallet creates the transaction tx = (Θ, αs, αr,m), with metadata m like
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the amount of fees or the change address. Next it accesses the Pay interface of πCoreWallet,
retrieves the signed transaction, and publishes it on the ledger.

Stake pool registration: A main staking operation that the wallet enables is the
formation of stake pools, which participate in the PoS protocol on behalf of stakeholders.
Every pool is identified by a registered staking key. Before registering the key, the wallet first
uses the address generation interface of πCoreWallet to produce a new staking key (vks, sks).
It then creates a registration certificate R = (vks,m), where m is the pool’s metadata, e.g.
the name of the pool’s leader. The certificate is passed to the Stake interface of the core
protocol, in order to sign it. Finally, the signed certificate is published on the ledger as part
of the metadata of a payment, thus registering the key vks on behalf of the pool.

Delegation: Delegation enables a stakeholder to commission a stake pool to perform
staking on its behalf. It is also based on certificates, like Σ = (vkss, 〈vksd,m〉). vkss is
the staking key to which the certificate applies, i.e. the key which controls the stake of
an address, vksd is the delegate’s key, i.e. the registered key of a stake pool, and m is the
certificate’s metadata. Again the wallet gives Σ to the Stake interface of πCoreWallet and
then publishes the signed certificate via a payment transaction’s metadata, similar to stake
pool registration. When a staking key issues a delegation certificate, all addresses which are
associated with it are re-delegated accordingly. For instance, if a pointer address points to
a key vkss, then the latest certificate issued by this key takes effect. Finally, a stake pool
re-delegates via a lightweight certificate, i.e. a certificate not published via a transaction but
included in the block’s headers; Appendix E further explores stake re-delegation.

5.2 Participation in the PoS Protocol

PoS participation consists of regularly publishing blocks to extend a chain. A block B is a
tuple (vks,m), where (vks, sks) is the key signing B and m are B’s contents. As with the
other staking actions, the wallet obtains a block’s signature via the staking interface (and a
verifier similarly checks it). However, a block’s validity, i.e. whether it can extend a given
chain, depends on the chain decision rules, which are affected by delegation as shown next.

Given its local chain C, a player retrieves the address which is eligible to produce a block
as αPoS = FPoS,player(C). αPoS has staking key vksPoS . A block B signed by a different
staking key (vks, sks) is valid for C if i) C contains a certificate that delegates from vksPoS to
vks or ii) either vksPoS has not delegated or a certificate that delegates from vksPoS to vksh is
published in C and B contains a lightweight certificate delegating from vksh to vks; otherwise
B is invalid. Additionally, the empty chain C = ε is valid and, given a chain C = C′||B, if
C′ is valid and B is valid for C′, then C is valid. A chain is picked between the previously
accepted chain C and the set of valid chains C available on the network: the longest chain
from C ∪ {C} is chosen. In case of length tie between two chains C1 and C2, where head(C1)
and head(C2) are signed by (vks1, sks1) and (vks2, sks2) respectively, the following rules apply:
• if vks1 and vks2 are delegated via two heavyweight certificates, then choose the certifi-

cate with the higher index
• else if vks1 is delegated via the heavyweight certificate Σ1 and vks2 is delegated via the

lightweight certificate Σ2, then C1 is chosen
• else if vks1 and vks2 are delegated via the combination of heavyweight and lightweight

certificates (Σ1,1,Σ1,2) and (Σ2,1,Σ2,2) respectively, then:
− if they have different indexes, choose the one with the higher index
− else if they have different counters, choose the one with the higher counter
− else choose the first observed on the network.
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5.3 Consensus Security under Stake Pools

To argue about the security of a PoS stake-pooled variant we turn to the underlying protocol’s
honest stake threshold assumption τ . This parameter identifies the minimum percentage of
stake that needs to be honest; typically, τ is set to 1/2 + ε or 2/3 + ε for some ε > 0.

We assume that stake is delegated to P pools, of which Ph back the correct protocol
execution and control ρh percentage of the total stake. In this setting we need to consider
pools, rather than stake itself. Intuitively, when a player delegates, they relinquish their
staking rights for block production (though they retain the right to choose their delegate). If
an honest party delegates to the adversary, then its becomes adversarial in the stake-pooled
setting. Thus, the adversary compromises the stake-pooled security by corrupting enough
pools, such that the percentage of stake that honest pools control is less than τ . We stress
that this does not necessarily imply that the adversary needs to corrupt a large number
of pools. For instance, if a pool controls ρa ≥ 1 − τ of the total stake, the adversary can
compromise the stake-pooled variant’s security by only corrupting this single large pool.
Corollary 1 formalizes this argument; its proof following directly from the definition of the
chain selection rules of Section 5.2. Also Appendix 5.5 briefly discusses special attacks against
stake-pooled PoS, namely sybil and replay attacks.

Corollary 1. Assume a PoS protocol π, the execution of which is secure if at least τ stake is
honest. The execution of π and the core-wallet protocol πCoreWallet under the chain selection
rules of Section 5.2 is secure if ρh ≥ τ , where ρh is the percentage of stake controlled by pools
that back the correct protocol execution.

5.4 The Wallet Modes of Execution

• Regular Wallet: A regular wallet is bootstrapped with a base address α0 and its stake
is managed by a key (vks, sks). After α0 receives its first assets, the wallet performs
staking actions using (vks, sks). In order to stake on its own, the wallet publishes a
delegation certificate Σ to its own key (vks, sks). Subsequent addresses are pointer
addresses to Σ, hence all addresses are managed by the same staking key. The user
can delegate to a staking pool with key vksP via a certificate Σd that delegates from
vks to vksP .
• Cold Staking: This wallet is offline (e.g. on paper) and rarely issues payments, but

performs staking actions. It is bootstrapped as above and, with its payment keys
stored offline, the staking keys are managed as follows: i) basic security: the staking
key (vks, sks) that manages all addresses is online; in case sks is compromised, the user
moves the funds to new addresses with a new staking key; ii) enhanced security: the
wallet creates a certificate Σ′ that delegates from vks to a “hot” key vksh; next the user
stores (vks, sks) offline and uses (vksh, sksh) such that, if (vks, sks)h is compromised,
(vks, sks) re-delegate to a new “hot” key without the need to move the funds.
• Enhanced Unlinkability of Addresses: Aiming at better privacy, each address is

managed by separate staking keys. To re-delegate the wallet issues a certificate for
each staking key, i.e. for each address. Different security levels are also available:
i) online: the wallet creates pointer addresses directly to the stake pool’s registration
certificate; in order to re-delegate, it moves the funds to new addresses; ii) offline:
the payment keys are stored offline, so the wallet creates base addresses, managed
by different staking keys which are online; in order to re-delegate, it publishes a new
certificate for each key.
• Stake Pool Wallet: A stake pool’s wallet performs staking with a key (vksP , sksP ) as

such: i) basic security: (vksP , sksP ) is online; in case of compromise, the wallet creates
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a new staking key, while an alert mechanism should notify the users to re-delegate to
the new key; ii) enhanced security: the wallet creates a lightweight certificate Σl,
which delegates to a “hot” key vksPh, and then stores (vksP , sksP ) offline, while using
(vks, sks)Ph and Σl for staking; if (vks, sks)Ph is compromised, the wallet creates a new
hot key (vks, sks)′Ph and re-delegates to it using a higher counter compared to Σl.

5.5 Attacks against Stake Pooled PoS

Sybil Attacks. Using stake pools for the PoS protocol’s execution, rather than the stake-
holders themselves, introduces the possibility of Sybil Attacks [21]. Specifically, suppose
that the adversary creates a large number of stake pools. Since it is hard for honest players
to identify an adversarial pool, they could appear legitimate and users might be convinced
to delegate to them, thus increasing the adversarial stake ratio. This is an inherent problem,
since no form of external identification exists and an adversary can create a large number of
staking keys and registration certificates. A potential countermeasure is to have pool leaders
commit (some of) their own stake to their pool. In our setting, this method is facilitated
by introducing an extra field in the delegation certificate’s metadata, which identifies the
leader’s addresses and funds committed to the pool. As long as the funds are locked in these
addresses, the leader cannot use them for multiple pool commitments. While this does not
directly prevent a Sybil attack, it does bound the attacker’s identity production capability.

Replay Attacks. An important consideration is replay protection. Replay attacks are
prominent in account-based ledgers, where an adversary may re-publish an old transaction.
For instance, suppose Alice sends x assets from her account A to Bob. After the payment
is published, A controls y = z − x assets, where z are the funds A held before the payment.
In a replay scenario, the adversary re-publishes this payment, thus a further amount x of
funds is sent from A to Bob. The same vulnerability exists against certificates, e.g. an
attacker can re-publish a past certificate in order to forcefully change a user’s delegation
choice. Our solution is based on an address whitelist. Specifically, the certificate defines the
addresses which are allowed to publish it; naturally, this scheme assumes that, upon creating
the certificate, the wallet knows the possible addresses that can publish it. In order to verify
a certificate, a node checks whether it is published in a transaction issued by a whitelisted
address. In order to replay the certificate, the adversary would need to infiltrate one of the
whitelisted addresses. Notably, no state needs to be maintained by the verifiers. Indeed, the
information which counters a replay attack, i.e. the address whitelist, is in the certificate,
without the need to parse the entire ledger or maintain extra local state, as in the case
of the counter-based mechanisms used in Ethereum, cf. [22]. Alternative, a deadline-based
approach could be followed. Similar to a whitelist, a certificate also includes a block limit,
i.e. the latest block in which the transaction can be published. The block limit should be
carefully chosen, in order to allow the block producers enough time to include it in a block.
On the one hand, if the limit is too low, then the block producers might not receive it on
time or might not prioritize it, and thus not publish it at all after the limit has expired. On
the other hand, if it is too high, then the user needs to wait a large amount of time before
being able to re-delegate their stake, which hurts the usability of the system.

6 Conclusion

Our work explores digital asset management on Proof-of-Stake (PoS) ledgers. Motivated by
the lack of formal treatment of PoS wallets, as well as the low level of decentralization in
existing systems, we provide two core results. First, we identify address malleability, a serious
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threat against any system which combines multiple attributes in a single object; in our case
two keys for payment and staking combined into a single address. Second, we formally define
a wallet’s core, i.e. the module responsible for actions like signing transactions and staking
actions. Combining the core wallet with a PoS ledger, we implement delegation and stake
pool in a PoS system, while investigating how these actions affect security. We also pose a
number of questions. For instance, our functionality does not cover the privacy and address
unlinkability requirements, as well as forward secure solutions. Finally, we highlight the need
for computationally efficient non malleable schemes without leaking the public payment key.
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A The Malleability Predicates

In this section we describe specific predicates for various cases of malleability. The first
parameter of the predicate is the set LP of all created addresses and their attributes for
a party P in the system. This parameter is necessary, so that the predicate compares the
given address with the honestly generated ones. The second parameter is the auxiliary
information auxM , which takes the values “recover”, “issue”, or “verify”. The auxiliary
information allows the predicate to behave differently, depending on the action, thus making
it more adjustable for various use cases. The third parameter is the address, for which the
predicate may identify a malleability attack.

A.1 The Full Malleability Predicate

The lowest level of security against malleability attacks is provided by the full malleability
predicate. A fully malleable construction, instantiated ML,T,P with ML,T,P

FM described in
Algorithm 2, enables an adversary to produce forged addresses with access only to a single
honestly-produced address.

Algorithm 2 The fully malleable predicate.

function ML,T,P
FM (aux, α)

switch “aux” do
case “issue”

return 1
case “verify” OR “recover”

d = parsePubAttrs(α)
for δ ∈ d do

if ∀α′ ∈ LP , d′ = parsePubAttrs(α′): δ 6∈ d′ then
return 0 . δ not registered detected

end if
end for

return 1
end function

A.2 The Ex Post Malleability Predicate

In an ex post malleable construction, the malleability predicate ML,T,P is instantiated with
ML,T,P

PM (aux, α). In this case, the predicate first identifies the list d of public attributes for the
address α. Then, for each attribute δ ∈ d, it checks: i) if there exists an issued transaction
tx = (Θ, αs, αr,m), such that the list of public attributes that pertain to the sender’s address
includes δ, and ii) if there exists an address that the wallet has created which used δ in its
public attributes. If both checks fail, then the predicate returns 0, otherwise 1.

Intuitively, this construction allows malleability to occur only for addresses whose pay-
ment key has been previously used in a transaction and for which all public attributes have
been used by the wallet in other addresses. Therefore, as long as the payment key of the
address has not been used, the scheme provides non-malleability.
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The ex post malleable construction, instantiated with the predicate ML,T,P
PM , is described

in Algorithm 3. By parsePubAttrs we denote the parsing of the list of public attributes given
an address.

Algorithm 3 The ex post malleability predicate.

function ML,T,P
PM (aux, α)

switch “aux” do
case “issue”

return 1
case “verify” OR “recover”

d = parsePubAttrs(α)
for δ ∈ d do

if ∀α′ ∈ LP , d′ = parsePubAttrs(α′): δ 6∈ d′ then
return 0

end if
if ∀(Θ, αs, αr,m) ∈ T, ds = parsePubAttrs(αs): δ 6∈ ds then

return 0
end if

end for
return 1

return 0
end function

A.3 The “Sink” Malleability Predicate

“Sink” malleability schemes are instantiated with simple cryptographic primitives and pro-
tect against attacks from both network and targeting adversaries, such as the stake pool
leader described above. Nevertheless, our design is (on purpose) generic enough, in order to
allow the description and usage of predicates for all malleability levels. Intuitively, a “sink”
malleable algorithm requires that only the owner of the honest wallet can create addresses
for payment keys of the wallet, even though it is possible to send funds to a forgery. This
is expressed by differentiating the behavior of the predicate depending on the auxiliary in-
formation. If aux pertains to the issuing of transactions then the predicate returns 1, i.e.
accepts all addresses to which the wallet tries to send funds, whereas for all other cases
it requires that the address is honestly generated. For completeness, the “sink” malleable
predicate MSM is defined in Algorithm 4.

B Security of the Generic Core-Wallet Protocol

The rationale on our security analysis is based on the Universal Composable Framework by
Canetti [9], which we review in this section. Also we briefly revisit the definition of secure
digital signatures, a main component of our definitions. For a more complete discussion,
we refer the reader to [10, 28]. Finally, we describe the properties of a cryptographic hash
function following the definitions of Damg̊ard [15].
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Algorithm 4 The “sink” malleable predicate.

function MSM(LP , auxM , α)
switch auxM do

case “issue”
return 1

case “verify” OR “recover”
if ∃lα : (α, lα) ∈ LP then

return 1 . α is registered
end if

return 0 . No α is registered
end function

B.1 The Universally Composable Framework

In our analysis, we rely on a simulation-based definition for capturing the security proper-
ties of our system and, more specifically, the Universal Composability (UC) Framework by
Canetti [9].

As a preparation for presenting the framework, consider two ensemblesX = {Xλ,z}λ∈N,z∈{0,1}∗
and Y = {Yλ,z}λ∈N,z∈{0,1}∗ of binary random variables. X and Y are said to be computa-
tionally indistinguishable, denoted by X ≈c Y , if for all z it holds that | Pr[D(Xλ,z) =
1]− Pr[D(Yλ,z) = 1] | is negligible7 in λ, i.e. negl(λ), for every probabilistically polynomial-
time (PPT) distinguishing algorithm D.

What follows is a brief description of the framework. We refer the interested reader to [9]
for a formal presentation.

The main idea of security proofs under the UC framework relies on the comparison
between the execution of a concrete protocol, say π, and a security definition, named the
ideal functionality. These two executions are, respectively, the real world and the ideal world.
Both are controlled by an entity called the environment, denoted by Z, which can submit
actions and observe outputs from the executions. The environment controls the execution
of π, through choosing the inputs of its participants, and also the actions of the adversary
A in the real world. It also controls the inputs of the ideal functionality, F , and the actions
of the ideal adversary S (or simulator). The adversary A is expected to read the messages
exchanged between the protocol players and even delay them. Moreover, it is allowed to
corrupt players, in which case the player’s secret state is compromised and is available to
the adversary.

More formally, every entity is modeled as a PPT Interactive Turing Machine (ITM), and
the real world and ideal executions are respectively represented by the ensembles

REALπ,A,Z = {REALπ,A,Z(λ, z, r)}λ∈N,z∈{0,1}∗

and

IDEALF ,S,Z = {IDEALF ,S,Z(λ, z, r)}λ∈N,z∈{0,1}∗

and uniform randomly chosen value r. We use REALπ,A,Z(λ, z, r) to denote the output of the
environment Z in the real-world execution of a protocol π and the adversary A under security
parameter λ, input z and randomness r. Analogously, we denote by IDEALF ,S,Z(λ, z, r) the
output of the environment in the ideal interaction between the simulator S and the ideal

7We say that a function f is negligible in k if for every c and d in N, there is a k0 ∈ N such that for all

k > k0 and x ∈ {0, 1}k
d

it holds that f(x, k) < k−c.
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functionality F under security parameter λ, input z and randomness r. It is said that the
protocol π securely realizes the functionality F when the environment cannot distinguish
between the two worlds, i.e. for every A exists a simulator S such that for every PPT Z we
have that REALπ,A,Z ≈c IDEALF ,S,Z .

B.2 The Secure Digital Signature Scheme

A digital signature scheme Σ, in the sense of Canetti [10] and Goldwasser et al. [28], is a
triple of algorithms 〈KeyGen,Verify, Sign〉. Σ is said to be resistant to Existential Unforgeable
under Adaptive Chosen Message Attacks (EUF-CMA) if it presents the following properties
w.r.t. the security parameter λ:

Completeness: For any message m, it holds:

Pr[(vk, sk)← KeyGen(1λ), σ ← Sign(sk,m) :

0← Verify(m,σ, vk)] ≤ negl(λ)

where all the probabilities are computed over the random coins of the generation and sign
algorithms.

Non-repudiation: For any message m, the probability that two independent executions
of Verify(m,σ, sk) for a key pair (vk, sk) ← KeyGen(1λ), output two different outcomes is
smaller than negl(λ);

Unforgeability: For any PPT algorithm Aforger, which can query the signature oracle
Sign(sk, ·) for signatures on a polynomial number of messages mi, it holds:

Pr[(vk, sk)← KeyGen(1λ) : (m,σ)← ASign(sk,·)
forger ∧m 6= mi]

< negl(λ)

where all the probabilities are computed over the random coins of the adversary, gener-
ation algorithm and the sign oracle.

B.3 Cryptographic Hash Functions

A cryptographic hash function H : {0, 1}∗ → {0, 1}l, for some l ∈ N which is the length of
the hash values, is a function that presents the following properties:

Definition 1 (Collision resistance). Given h ← {0, 1}l it should be computationally
infeasible for a probabilistic polynomial algorithm to find a value x such that h = H(x).

Definition 5 (Pre-image resistance). It should be computationally infeasible for a proba-
bilistic polynomial algorithm to find two values x, y where x 6= y such that H(x) = H(y).

Definition 6 (Second pre-image resistance). Given a value x, it should be computationally
infeasible for a probabilistic polynomial algorithm to find a value y 6= x such that H(x) =
H(y).

B.4 Security of πCoreWallet in the “sink” malleable setting

The security of πCoreWallet is given w.r.t. FMCoreWallet, the signature scheme’s Existential
Unforgeability under Adaptive Chosen Message Attacks (EUF-CMA) property, and a number
of properties of our custom algorithms.
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The complete proof for the Theorem 1 presented in Section 4.2 can be found below.
Here, the ideal functionality, parameterized with the “sink” malleability predicate MSM, is
realized by the protocol that employs the “sink” malleable address generation function. It
also uses tag and hierarchical key construction functions which present the above necessary
properties. For completeness, we define the “sink” malleable address generation function in
Algorithm 5.

Algorithm 5 The “sink” malleable address generation function, parameterized by H(·) and
Σ = 〈KeyGen,Verify, Sign〉. The input is a tuple lα,Gen, consisting of the auxiliary information
aux and the attributes.

function SinkGenAddr(lα,Gen)
(aux, st, vkp, skp) = parse(lα,Gen)
switch aux do

case “base”
β = H(st)

case “pointer”
β = getPointer(st)

case “exile”
β = st

α = H(vkp)||β||Sign(skp, β)
return α

end function

Theorem 1. Let the generic protocol πCoreWallet be parameterized by a signature scheme
Σ = 〈KeyGen,Verify,Sign〉 and the RTagGen, HKeyGen, and GenAddr functions. Then πCoreWallet

securely realizes the ideal functionality FMSM
CoreWallet if and only if Σ is EUF-CMA, GenAddr is

collision resistant and attribute non-malleable (cf. Definitions 2 and 4), RTagGen is collision
resistant (cf. Definition 1), and HKeyGen is hierarchical for Σ (cf. Definition 3).

Proof. The proof is constructed in the UC Framework, therefore it is a simulation based
proof. As such, we will show that the environment Z cannot efficiently distinguish between
two executions, the ideal and the real. Here, the simulator S interacts with the ideal func-
tionality FMSM

CoreWallet in the ideal execution, whereas A interacts with πCoreWallet in the real
execution.

Proof overview. We divide the proof in the “if” and “only if” parts. First, the “if”
part shows that if πCoreWallet does securely realize the ideal functionality FMSM

CoreWallet, when
instantiated with a EUF-CMA signature scheme Σ, a collision resistant and non-malleable
address generation scheme GenAddr, and suitable RTagGen,HKeyGen functions at least one of
the conditions is violated. The “only if” part shows that, if either of the functions’ properties
does not hold, e.g. if Σ is not EUF-CMA or GenAddr is either not collision resistant or non-
malleable, then πCoreWallet does not securely realize the functionality FMSM

CoreWallet, i.e. the
environment is able to distinguish between the two executions.

Let us now provide the construction for the simulator S, which will be useful in the “if”
part of the proof.

The simulator S. The simulator S runs internally a copy of the adversary A, and keeps
a table TABLE of tuples (·, ·, ·, ·) of respectively addresses, attributes, and staking key pairs.
Also it performs as follows:
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• Any inputs received from the environment Z, forward them to the internal copy of A.
Moreover, forward any output from A to Z;
• Initialization: Upon receiving the message (Initialise, sid) from the functionality

FCoreWallet, compute a dummy master keymsk
$←− {0, 1}λ and return (InitialiseOk, sid);

• Address Generation: Upon receiving (GenerateAddress, sid, aux) from FCoreWallet,
do similarly to protocol πCoreWallet, that is:
− set i← I,
− set the key pair (vkpc, skpc) =

HKeyGen(〈msk, “payment”, i〉),
− set the tag wrt = RTagGen(〈msk, i〉),

and do the following:
− if aux = (“base”) compute the key pair (vksc, sksc) =

HKeyGen(〈msk, “staking”, i〉) and set β = vksc;
− if aux = (“pointer”, vks), set β = vks;
− if aux = (“exile”), set β = ⊥.

Then compute the address α = GenAddr(〈aux, β, vkpc, wrt〉) and set the address lα =
〈vksc, wrt, aux, vkpc, skpc, sksc〉. Then record (α, lα, β, skpc) to TABLE. Finally, hand
to FCoreWallet the message (Address, sid, α, lα);
• Issue Transaction: Upon receiving (Pay, sid,Θ, αs, αr,m) find a record lα on TABLE

that contains the sender’s address αs as the first item. Then generate the signature σ
for the transaction tx, such that tx = (Θ, αs, αr,m), using Sign and the payment key
of αs, and hand (Transaction, sid, tx, σ) to the functionality FCoreWallet. Note that
with the attribute list lα, S can properly generate σ. Moreover such record is expected
to be in TABLE, since the functionality allows the issuing of transactions by properly
generated addresses by checking on the list LP before sending to S;
• Verify Transaction: Upon receiving (VerifyPayment, sid, tx, σ) from FCoreWallet,

find the recorded verification key vkpc for the sender’s address αs in tx = (Θ, αs, αr,m)
by looking up lα for αs in TABLE, and use Verify to retrieve the verification bit φ. Then
return to FCoreWallet the message (VerifiedPayment, sid, tx, σ, φ);
• Issue Staking: Similarly to issuing a payment transaction, upon receiving the message

(Stake, sid, stx), such that stx = (vkp,m), find the correspondent staking key skp and
use Sign to generate σ, then hand (Staked, sid, stx, σ) to FCoreWallet;
• Verify Staking: As before, upon receiving (VerifyStaking, sid, stx, σ), find the

staking key that pertains to stx, use Verify to retrieve the verification bit φ, and
send the message (VerifiedPayment, sid, stx, σ, φ) to FCoreWallet. Similarly to Issue
Transaction interface, note that S knows skpc via TABLE;
• Party Corruption: Whenever the adversary A corrupts a party P , S corrupts it in

the ideal process and hands to A the corresponding entries in TABLE.

The “if” part. Assume, for the sake of the argument, that the environment Z can dis-
tinguish between the ideal and the real execution with non-negligible probability for any
simulator construction, including the earlier S construction. In that case, it suffices to show
that, if πCoreWallet does not securely realize FCoreWallet, and given the S construction, then
either of the following holds when “bad” events (say E) occur: the signature scheme is
not EUF-CMA, GenAddr is not collision resistant or attribute non-malleable, the function
RTagGen is not collision resistant, or the hierarchical property of HKeyGen does not hold.

Unforgeability: We assume that collision resistance and non-malleability properties of
the algorithm GenAddr hold, likewise the collision resistance and hierarchical properties for
RTagGen and HKeyGen respectively, along with the signature scheme properties completeness
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and non-repudiation, but unforgeability does not hold (otherwise the theorem completes).
Note that, by hypothesis, Z distinguishes between the two worlds for any construction of S,
including the earlier S construction.

Now we construct a forger G for the unforgeability game per the EUF-CMA definition,
which initially receives (vkp, skp) as a challenge (we focus on the payment keys and interfaces,
but we note that the case for staking is analogous). G simulates the earlier described S in
the interaction with Z. It then issues signature queries to its game, when requested by its
simulation of S and FCoreWallet for signatures on vkp.

In addition, when receiving messages like (VerifyPayment, sid, tx, σ) for other ad-
dresses (possibly from other verification keys), G uses its internal simulation, specifically the
Transaction Verification interface, i.e. its internally generated keys, to properly simulate the
execution to Z. In particular it checks if (tx, σ) has been queried in the security game. If it
is not listed as queried and Verify(tx, σ, vkp) = 1, then it outputs (tx, σ) and wins the game.
Otherwise, it continues with the simulation.

Given that the environment Z distinguishes between the two executions by hypothesis
and all other properties of the functions hold, we are guaranteed that if πCoreWallet does not
securely realize FCoreWallet, then the unforgeability property does not hold.

Note that the earlier unforgeability reasoning is valid for Σ with key generation relying on
KeyGen, however πCoreWallet relies on HKeyGen. Therefore, consider the following argument.

HKeyGen is hierarchical for Σ and every index i is used only once: Assume the two
following protocols: i) a protocol which is similar to πCoreWallet, except the key generation
function KeyGen of Σ is used instead of HKeyGen, and ii) the protocol πCoreWallet. Now,
it is evident that the first protocol securely realizes the ideal functionality (since all other
properties needed as per the Theorem hold). Therefore, the execution of the first protocol
is indistinguishable from the execution of the ideal functionality, as proved in the earlier
reasoning.

Next, consider a PPT algorithm D who tries to distinguish between the executions of the
two protocols above. Specifically, assume that there exists a “special” index i, for which the
usage of HKeyGen in the signature scheme is insecure, i.e. a forgery can be computed by the
adversary. For the sake of argument, consider the probability that the scheme breaks for this
index i by p. It is clear that, for this index i, D is successful, by observing the violation of the
properties of the signature scheme with HKeyGen. Note also that the number of produced
keys, i.e. the number of used indexes in both executions, is bounded by a polynomial P (λ).
Therefore, the overall probability that D is successful is equal to p

P (λ) .
However, by definition, HKeyGen is hierarchical for Σ. Thus, the executions of the two

protocols are indistinguishable and, as a result, the probability that D is successful, i.e.
p

P (λ) , is negligible. Consequently, the probability p, i.e. that the signature scheme which uses
HKeyGen breaks, is also negligible. Therefore, the execution of πCoreWallet is indistinguishable
from the execution of the ideal functionality as well, thereby πCoreWallet securely realizes the
ideal functionality.

The “only if” part. Here we show that, if a single property does not hold, then the
environment Z can distinguish between the real and ideal executions with non-negligible
probability. In other words, there is no simulator construction that prevents Z from distin-
guishing both executions.

Success probability of Z under weakened assumptions. We now assume that some
property of the functions used by the protocol is broken. We will then show that πCoreWallet

does not securely realize FCoreWallet. Specifically, we can create an environment Z and an
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adversary A such that, for any simulator S, Z distinguishes between the real execution of
A with πCoreWallet and the ideal execution of S with FCoreWallet.

Initially, the environment sends (Initialise, sid) for some party P . For each property
required by the theorem, we show that the environment can distinguish between the two
executions as follows:
• Completeness: We assume that Σ is not complete. The environment now initializes

the wallet for a second party P ′. Then it sends two types of message to generate
address (GenerateAddress, sid, aux) for some arbitrary value of auxiliary informa-
tion aux and obtains two addresses αs and αr for the parties P and P ′ respectively.
Next, it creates a transaction object tx = (Θ, αs, αr,m), for arbitrary values of assets
Θ and metadata m, and obtains a signature σ for the transaction tx by sending the
message (Pay, sid, tx). Finally, it calls the verification interface of the wallet by send-
ing the message (VerifyPayment, sid, tx, σ). In the ideal execution the output is
always (VerifiedPayment, sid, tx, σ, 1), whereas in the real execution the probability
that the output of the interface is (VerifiedPayment, sid, tx, σ, 0) is non-negligible.
The environment could also succeed in distinguishing the executions by accessing the
Staking and Staking Verification interfaces, issuing staking acts and checking the
verification bit similarly as with payment transactions.
• Non-repudiation: We assume that Σ does not offer non-repudiation. The environ-

ment now acts like in the case of completeness, obtaining a signed transaction (tx, σ).
However, it now calls the verification interface twice. In the ideal execution, the verifi-
cation bit of the response will both times be equal to 1, whereas in the real execution
the probability that the verification bit is 0 is non-negligible. Again the environment
could access the staking issuing and verification interfaces similarly.
• Unforgeability: We assume that Σ is forgeable, so there exists a forger G for Σ. The

environment now runs an internal copy of G. When G wishes to obtain a signature
from its oracle for some transaction tx, Z accesses the Issue Transaction interface
by sending the message (Pay, sid, tx) and obtains a signature, which it forwards to G.
When G outputs a signed transaction (tx, σ), Z proceeds as follows. If tx has been
previously signed, i.e. if σ has been creating by accessing the Issue Transaction
before, then it halts. Otherwise, it accesses the verification interface by sending the
message (VerifyPayment, sid, tx, σ). Now, in the ideal execution the verification bit
in the response from the verification interface is always 0, whereas in the real world it
is 1 with non-negligible probability.
• Collision resistance: We assume that GenAddr is not collision resistant. The envi-

ronment obtains two addresses by calling the address generation interface twice, i.e.
sending two messages (GenerateAddress, sid, aux) for the same auxiliary informa-
tion aux. In the ideal execution the attribute lists in the address responses will always
be different, whereas in the real execution the probability that two equal addresses for
different attribute lists are returned is non-negligible.
• Attribute non-malleable: We assume that GenAddr is not attribute non-malleable.

Then the environment Z, which may retrieve correctly generated addresses by ac-
cessing the Address Generation interface, can generate a forged address α∗. Assume,
without loss of generality, that α∗ has been the receiving address for some past trans-
action, therefore α∗ owns some assets. Assume also that Z issues a transaction from
α∗ to a legitimate address αr, i.e. created via the address generation interface of
FCoreWallet. Then, upon submitting (VerifyPayment, sid,Θ, α∗, αr,m, σ), for some
assets Θ and metadata m, Z will receive (VerifiedPayment, sid,Θ, α∗, αr,m, σ, 0),
since the check of the predicate MSM within FMSM

CoreWallet outputs 0. On the other hand,
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in the real world interaction with πCoreWallet, the environment Z will receive the mes-
sage (VerifiedPayment, sid,Θ, α∗, αr,m, σ, 1). Therefore, Z is able to distinguish
between the executions.
• RTagGen collision resistance and every index i is used only once: Let us now

assume that either RTagGen is not collision resistant or that an index i is used more than
once. Then Z can generate several address requests (GenerateAdddress, sid, aux)
and observe the generated tags wrt within each address α. If RTagGen is not collision
resistant, then Z will observe a bias in the distribution of the output of RTagGen in
the real world, i.e. it will observe the same recovery tag for two different addresses.
• HKeyGen hierarchical property and every index i is used only once: Assume

now that HKeyGen is not hierarchical for Σ. Then, following the reasoning above,
the execution of the protocol which uses KeyGen is indistinguishable from the ideal
execution. However, by assumption the execution of πCoreWallet is not indistinguishable
from the execution of that protocol anymore. Therefore, it is not indistinguishable from
the execution of the ideal functionality as well.

Note that, in all cases, there is no mention of the simulator S, therefore the reasoning
applies for any construction of S.

In conclusion, we have shown that if either of the properties is broken, then the envi-
ronment can distinguish between the two executions, thus a protocol that uses a scheme
that does not provide one of the properties does not securely realize the ideal functionality
FCoreWallet.

C Construction and Recovery of Addresses

The final step in fully realizing the core wallet is to implement the functions used by the
protocol πCoreWallet, more importantly the address generation function. In the following
paragraphs, we outline the three types of addresses in our framework, i.e. the base, pointer,
and exile addresses. We concretely describe an address’s attributes and how an index are
chosen to generate a “child” address.

C.1 Address Types and their Attributes

An address α is typically associated with an attribute list lα,Gen. As shown in the previous
sections, at least two attributes are required, the staking (vks, sks) and the payment (vkp, skp)
key pairs. The signing keys, sks and skp, of these pairs are private attributes, whereas the
verification keys of each pair, vkp of the payment pair and vks of the staking key pair, are
semi-public and public attributes, respectively. We remind that (vkp, skp) is used in proving
ownership of the assets and issuing payments, whereas (vks, sks) is used to perform staking
actions on behalf of the assets.

The first step in computing a “child” address and its attributes is the choice of an index
i from the set I. An index is an identifier that is used to generate a “child” key. Our design
defines a list of domains [I1, I2, . . . , ], where each Ii has a finite, relatively small, cardinality.
During address generation, the wallet initially picks indexes from I1. After all indexes in I1

have been used, it uses I2 and so on. It is required that at least one address for an index in
Ij is published on the ledger, i.e. is on the sending or receiving end of a transaction, before
indexes from Ij+1 are used. During recovery, the wallet sets j = 1 and generates all indexes
in Ij . It then constructs the recovery tag for each index and compares it with each address
in the blockchain. If at least one index has been used in a published address, then the wallet
sets j = j+1 and repeats for Ij+1. When, for some j no index corresponds to any published
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address, recovery is complete.
We discuss now the complexity of the recovery procedure. We note that, given that the

cardinality of I is small, the probability that the same index is chosen twice, even for a
random choice, is not negligible. Therefore, two devices that maintain the same wallet core
would need to share the state of the indexes that have been used by each. The number of
indexes and addresses that the wallet can generate is not restricted, since the set of domains
is infinite. In terms of complexity, this naive scheme is linear to the number of addresses
in the ledger. We can improve on it by using an index of published addresses indexed by
their recovery tag. Using such index, the recovery complexity is now linear to the cardinality
of
⋃
j

Ij , i.e. the number of addresses that the wallet owns and has published. We note

that, since the recovery tags are public, such index can be constructed and circulated on the
network by everybody.

A hierarchical key, which is derived from the wallet’s master key msk and is linked to a
“child” address, is created by HKeyGen. This function takes the master key, a label lbl ∈
{“payment”, “staking”} and an index i and passes them to a Pseudo Random Function,
which outputs a pseudo-random value passes it to a Pseudo-Random Number Generator that
outputs P (λ) bits ρ for some suitable polynomial P . These bits are passed as random coins to
the key generation function KeyGen(1λ; ρ). Therefore, in order to generate a “child” payment
key, the protocol runs HKeyGen(〈msk, “payment”, i〉), while similarly lbl = “staking” is used
to issue a new staking key.

As mentioned above, the wallet produces three types of addresses, which are differentiated
by the staking object denoted by β. In order to output a base address, the wallet computes
a staking key vks and sets β as the hash of it. In the case of a pointer address, the address’s
staking key is set indirectly. Specifically, the staking object β is a delegation pointer ptr.
The pointer is a string that identifies a published certificate, i.e. the representation of a
staking action on the ledger. We briefly mention here that, if ptr points to a valid delegation
certificate τdel, then the address’s staking key is the delegate’s key in τdel, whereas, if ptr
points to a registration certificate, then the delegate’s key is the key of the stake pool defined
in that certificate. In the case of an exile address, the staking object is a fixed value ε, which
is equivalent to ⊥ in the ideal functionality. Since ε does not identify a staking key, the owner
of an exile address cannot perform staking actions or delegate the staking rights. Therefore,
all assets owned by such addresses are effectively removed from the PoS protocol.

Each address also contains the recovery tag wrt, a public parameter which allows the
identification of addresses. The tag is created by the function RTagGen and links the address
to the attribute list without revealing the semi-public attributes, e.g. the payment key. We
remind that recovery is a process that relies only on the master key of the wallet, so the wallet
should be able to recover an address by only knowing its payment key. During recovery in the
simplest setting, the wallet computes the keys for its indexes and hashes them to compute
the recovery tags. Therefore, RTagGen is the hash function H and, by definition, is also
collision resistant as needed.

Searchable recovery. This design builds on the premise of searchable encryption [4].
Specifically, a user who possesses the wallet’s master key is able to use it in order to search
all addresses that appear in the ledger and recognize the ones that belong to the wallet. We
assume an instance of a semantically secure symmetric encryption scheme that is comprised
of the algorithms 〈Enc,Dec〉. The hierarchical tag generation function SearchableTagGen in
this scheme computes the output of Enc using msk as the encryption key and the index i as
the plaintext: sht = Enc(msk, i)

During the recovery phase, the wallet parses all addresses in the blockchain and decrypts
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the tag sht′ in each as i′ = Dec(msk, sht′). If the output is a well formed index i′ ∈ I, then
the address belongs in the wallet and its hierarchical index is i′. Also, since the output of
the encryption function Enc is by definition random in the domain of Enc, then the recovery
tag generation is a PRF.

C.2 Non Malleable Address Generation

Here we analyze the security of the non malleable address scheme, i.e. the most secure scheme
we can hope to achieve in this setting. The core idea is to certify the staking object with the
payment key, while also revealing the public payment key, such that anybody can verify this
certification. A “sink” malleable address is constructed as follows: α = vkp||β||Sign(skp, β)
We note that the payment key vkp also serves the recovery tag wrt. The staking object
β for the three address types is: i) Base Address: β = H(vks); ii) Pointer Address:
β = getPointer(vks); iii) Exile Address: β = ε, where getPointer computes a pointer to the
staking key vks. Algorithm 6 defines the non malleable construction and Lemmas 1 and 2
prove that our scheme is collision resistant and non-malleable.

Algorithm 6 The non malleable address generation function, parameterized by H(·) and
Σ = 〈KeyGen,Verify, Sign〉. The input is a tuple lα,Gen, consisting of the auxiliary information
aux and the address’s attributes.

function NMGenAddr(lα,Gen)
(aux, st, vkp, skp) = parse(lα,Gen)
switch aux do

case “base”
β = H(st)

case “pointer”
β = getPointer(st)

case “exile”
β = st

α = vkp||β||Sign(skp, β)
return α

end function

Lemma 1. NMGenAddr is collision resistant if H is collision resistant and Σ is EUF-CMA.

Proof. Suppose two different attribute lists l1 = (aux1, st1, vkp1, skp1), l2 = (aux2, st2, vkp2, skp2),
such that l1 6= l2, which correspond to the addresses α1 = NMGenAddr(l1) = vkp1||β1||Sign(skp1, β1)
and α2 = NMGenAddr(l2) = vkp2||β2||Sign(skp2, β2). If α1 = α2 then either st1 6= st2
or Sign(skp1, β1) = Sign(skp2, β2) (otherwise skp1 6= skp2 which is impossible). If the lat-
ter holds, then an adversary is able to produce the same signature for two different pairs
of key/message (skp1, β1) and (skp2, β2), which should be impossible. If the former holds,
then the addresses are either base or pointer addresses. If they are base addresses, then
H(st1) = H(st2), i.e. a collision has been found. If they are pointer addresses, then they
point to the same position on the ledger, i.e. st1 = st2 which is a contradiction.

Lemma 2. NMGenAddr, parameterized with a signature scheme Σ, is attribute non-malleable
if Σ is EUF-CMA.
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Proof. Assume the key pair (vkp, skp) and the address α = vkp||β||Sign(skp, β), for staking
object β. Also assume the existence of an adversary A who breaks the attribute non-
malleability property of NMGenAddr. We will construct a forger F for the signature scheme,
which simulates the security game for A. The forger works as follows: F receives a key
vkp and has access to the signing oracle. It sets the attribute list l = (vkp, aux, β, wrt) and
initializes A with public attributes (aux, β, wrt). Note that F answers generation address
queries by using its own signature oracle. That is, upon receiving (auxi, βi, wrti), it issues a
signature query on βi and generates a new address αi. Moreover, F may receive a metadata
query on issued addresses αi and answer by revealing vkp. By hypothesis, the adversary A
outputs a list (α∗, aux∗, β∗, wrt∗), following the definition of the attribute non-malleability
game, for which it holds that NMGenAddr(skp, vkp, aux∗, β∗, wrt∗) → α∗, such that α∗ was
not queried during the game and α∗ 6= α, where α is the original address of the challenge
NMGenAddr(skp, vkp, aux, β, wrt) → α. Since A is successful, the signature holds for both
α and α∗, so F uses α∗ = vkp||β∗||σ∗ to output (α∗, σ∗) as its pair of forged message and
signature.

D Integration of Core-Wallet with Ouroboros Praos

Section 5 provided a generic model of a PoS ledger. Now we further explore our wallet con-
struction in conjunction with an existing PoS protocol. In particular, given its decentralized
nature and support for delegation, we find Ouroboros Praos [17] a suitable study case for
our framework. Furthermore, our framework and Ouroboros Praos enable both stake pool
registration and the cold/hot wallet techniques detailed earlier.

The execution of Ouroboros Praos is divided in time-slots, each associated with a single
block generated by the parties that run the protocol. A fixed number of time-slots is called
an epoch. In a nutshell, for each time-slot within the epoch a particular token is selected via
the consensus protocol. The owner of the token or, in our setting the player who has the
delegation rights over it, is expected to generate the block. In our ledger abstraction, this
selection mechanism is described by the function FPoS,player(·).

A key component of Ouroboros Praos is the Verifiable Random Function (VRF) intro-
duced in [34]. Its use is intrinsically related to the choice of the slot leader, i.e. the issuer
of the block for a particular time-slot. Briefly, a VRF allows a player to evaluate a value x,
given a secret key sk, and compute a pseudorandom value y and a proof π of the compu-
tation. Other players can then verify the generation of y using π, the initial input x, and
the corresponding verification key vk. Following our abstraction, the function FPoS,player(·)
outputs the pair (y, π) based on the earlier epochs.

Pool Registration with Previously Delegated Stake. First, the pool operator pub-
lishes a registration certificate Σ = (r, σ), where r = (vksP ,m). This is achieved via a
transaction clearly marked for pool registration and therefore with a fixed fee Φreg. The
metadata m includes information regarding the stake pool, e.g. real-world information re-
garding its operator. Following, the pool controls its initial and its delegated stake; the
delegation is achieved via the heavyweight certificates described in Section 5. Regarding the
initial stake, we require m to store additional information:
• a list verification keys (vks1, vks2, . . . ), corresponding to the players who pledge their

stake to the pool prior to its registration;
• the VRF verification key vk used to authenticate the issuing of each block.

Since the registration certificate describes the pool’s initial stake, it requires the signature
of all (vks1, vks2, . . . ). For extra security, the pool’s key (vksP , sksP ) has to be a cold key,
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otherwise the sksP has to be accessed every time a block is issued. Finally, the registration
of the pool should contain the address αreg, which is controlled by the pool’s operator and
is used to deposit the rewards for the participation in the protocol.

Hot Evolving and Cold Regular Key Pairs. In the hot/cold wallet mechanism, the
pair (vksP , sksP ) is a cold key, i.e. is kept offline, whereas the pair (vksPh, sksPh) is ex-
posed online and is used for signing blocks. This mechanism raises the need of generating a
lightweight certificate to authenticate the creation of the block by the proof operator. Now,
the pair (vksPh, sksPh) can be instantiated using a Key Evolving Signature scheme (KES) in
the spirit of [5], as employed in [17]. Briefly, the secret key sksPh of a KES scheme can be
continuously evolved, i.e. each instance sksPh,i is related to the time period i. Therefore,
each new block contains a lightweight certificate signed by the corresponding instance sksPh,j
for the correct time j.

E Delegation Chains

Chain delegation is the ability of a staking key to re-delegate stake that has been delegated
to it. As described in Section 5.1, the metadata section of a delegation certificate defines the
rules that pertain to the certificate. One such rule relates to chain delegation, the metadata
entry for which is the boolean value “allowChain”, which identifies whether chain delegation
is allowed to occur for the stake on which the certificate applies. For example, suppose two
certificates Σ0 and Σ1, such that Σ0 delegates from the key vks0 to a key vks2 and states
“allowChain” = true, whereas Σ1 delegates from vks1 to the same delegate key vks2 and
states “allowChain” = false. Suppose now that a third certificate Σ3 is published, with
source key vks2 and delegate key vks3. In this case, although vks3 can stake for all addresses
associated with vks0, it cannot stake for those associated with vks1, since the key that can
stake for them, according to the delegation chain rules, is vks2. More concretely, a delegation
chain is a list of certificates [Σ1, . . . ,Σi] such that, for each certificate Σj , 1 < j ≤ i, it
holds that Σj−1[vksdelegate] = Σj [vkss]. We say that vks is delegated via a chain [Σ1, . . . ,Σ]
if Σ[vksdelegate] = vks.
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