28,373 research outputs found

    Gender and uveitis in patients with multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS), a demyelinating disease of the central nervous system, is more commonly seen in women. It has been associated with both anterior and intermediate uveitis as well as retinal vasculitis. Ocular inflammation may develop concurrent with, prior to, or after the development of neurologic signs and symptoms. Patients with MS have an approximately 1% chance of developing intraocular inflammation. Patients with intermediate uveitis have an 8-12% risk of being diagnosed with MS. This risk is higher in females and in those with bilateral disease. This should be kept in mind when evaluating patients with uveitis, particularly in those patients for whom TNF inhibitor therapy is being considered, as these agents may worsen demyelinating disease

    Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    Get PDF
    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes

    A theory of solar type 3 radio bursts

    Get PDF
    Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes

    Nonlinear stability of solar type 3 radio bursts. 1: Theory

    Get PDF
    A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond

    Nonlinear stability of solar type 3 radio bursts. 2: Application to observations near 1 AU

    Get PDF
    A set of rate equations including strong turbulence effects and anomalous resitivity are solved using parmeters which model several solar type 3 bursts. Exciter distributions observed at 1 AU are excitation of the linear bump-in-tail instability, amplifying Langmuir waves above the threshold for the oscillating two stream instability (OTSI). The OTSI, and the attendant anomalous resistivity produce a rapid spectral transfer of Langmuir waves to short wavelengths, out of resonance with the electron exciter. Further energy loss of the beam is thus precluded. The various parameters needed to model the bursts are extrapolated inside 1 AU with similar results. Again, the OTSI is excited and decouples the electron beam from the Langmuir radiation. Reabsorption of the Langmuir waves by the beam is shown to be unimportant in all cases, even at 0.1 AU. The theory provides a natural explanation for the observed realationship between radio flux, and the electron flux

    Stabilization of electron streams in type 3 solar radio bursts

    Get PDF
    It is shown that the electron streams that give rise to Type 3 solar radio bursts are stable and will not be decelerated while propagating out of the solar corona. The stabilization mechanism depends on the parametric oscillating two stream instability. Radiation is produced near the fundamental and second harmonic of the local electron plasma frequency. Estimates of the emission at the second harmonic indicate that the wave spectra created by the oscillating two stream instability can account for the observed intensities of Type 3 bursts

    Hydrodynamics of Monolayer Domains at the Air-Water Interface

    Full text link
    Molecules at the air-water interface often form inhomogeneous layers in which domains of different densities are separated by sharp interfaces. Complex interfacial pattern formation may occur through the competition of short- and long-range forces acting within the monolayer. The overdamped hydrodynamics of such interfacial motion is treated here in a general manner that accounts for dissipation both within the monolayer and in the subfluid. Previous results on the linear stability of interfaces are recovered and extended, and a formulation applicable to the nonlinear regime is developed. A simplified dynamical law valid when dissipation in the monolayer itself is negligible is also proposed. Throughout the analysis, special attention is paid to the dependence of the dynamical behavior on a characteristic length scale set by the ratio of the viscosities in the monolayer and in the subphase.Comment: 12 pages, RevTeX, 4 ps figures, accepted in Physics of Fluids

    Investigation of a pulsed electrothermal thruster system

    Get PDF
    The performance of an ablative wall Pulsed Electrothermal (PET) thruster is accurately characterized on a calibrated thrust stand, using polyethylene propellant. The thruster is tested for four configurations of capillary length and pulse length. The exhaust velocity is determined with twin time-of-flight photodiode stagnation probes, and the ablated mass is measured from the loss over ten shots. Based on the measured thrust impulse and the ablated mass, the specific impulse varies from 1000 to 1750 seconds. The thrust to power varies from .05 N/kW (quasi-steady mode) to .10 N/kW (unsteady mode). The thruster efficiency varies from .56 at 1000 seconds to .42 at 1750 seconds. A conceptual design is presented for a 40 kW PET propulsion system. The point design system performance is .62 system efficiency at 1000 seconds specific impulse. The system's reliability is enhanced by incorporating 20, 20 kW thruster modules which are fired in pairs. The thruster design is non-ablative, and uses water propellant, from a central storage tank, injected through the cathode

    Intermittency and the passive nature of the magnitude of the magnetic field

    Full text link
    It is shown that the statistical properties of the magnitude of the magnetic field in turbulent electrically conducting media resemble, in the inertial range, those of passive scalars in fully developed three-dimensional fluid turbulence. This conclusion, suggested by the data from Advanced Composition Explorer, is supported by a brief analysis of the appropriate magnetohydrodynamic equations

    First excited band of a spinor Bose-Einstein condensate

    Full text link
    The analytical expression of the fractional parentage coefficients for the total spin-states of a spinor N-boson system has been derived. Thereby an S-conserved theory for the spinor Bose-Einstein condensation has been proposed. A set of equations has been established to describe the first excited band of the condensates. Numerical solution for 23^{23}Na has been given as an example.Comment: 6 pages, 3 figure
    • …
    corecore