3,954 research outputs found

    Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    Get PDF
    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes

    Additive factors and stages of mental processes in task networks.

    Get PDF
    To perform a task a subject executes mental processes. An experimental manipulation, such as a change in stimulus intensity, is said to selectively influence a process if it changes the duration of that process leaving other process durations unchanged. For random process durations a definition of a factor selectively influencing a process by increments is given in terms of stochastic dominance (also called “the usual stochastic order”. A technique for analyzing reaction times, Sternberg\u27s Additive Factor Method, assumes all the processes are in series. When all processes are in series, each process is called a stage. With the Additive Factor Method, if two experimental factors selectively influence two different stages by increments, the factors will have additive effects on reaction time. An assumption of the Additive Factor Method is that if two experimental factors interact, then they influence the same stage. We consider sets of processes in which some pairs of processes are sequential and some are concurrent (i. e., the processes are partially ordered). We propose a natural definition of a stage for such sets of processes. For partially ordered processes, with our definition of a stage, if two experimental factors selectively influence two different processes by increments, each within a different stage, then the factors have additive effects. If each process selectively influenced by increments is in the same stage, then an interaction is possible, although not inevitable

    Digital demodulator-correlator

    Get PDF
    An apparatus for demodulation and correlation of a code modulated 10 MHz signal is presented. The apparatus is comprised of a sample and hold analog-to-digital converter synchronized by a frequency coherent 40 MHz pulse to obtain four evenly spaced samples of each of the signal. Each sample is added or subtracted to or from one of four accumulators to or from the separate sums. The correlation functions are then computed. As a further feature of the invention, multipliers are each multiplied by a squarewave chopper signal having a period that is long relative to the period of the received signal to foreclose contamination of the received signal by leakage from either of the other two terms of the multipliers

    Spin anisotropy effects in dimer single molecule magnets

    Full text link
    We present a model of equal spin s1s_1 dimer single molecule magnets. The spins within each dimer interact via the Heisenberg and the most general set of four quadratic anisotropic spin interactions with respective strengths JJ and {Jj}\{J_j\}, and with the magnetic induction B{\bf B}. We solve the model exactly for s1=1/2,1,5/2s_1=1/2, 1, 5/2, and for antiferromagnetic Heisenberg couplings (J<0J<0), present M(B){\bf M}({\bf B}) curves at low TT for these cases. Low-TT CV(B)C_V({\bf B}) curves for s1=1/2s_1=1/2 and electron paramagnetic susceptibility χ(B,ω)\chi({\bf B},\omega) for s1=1s_1=1 are also provided. For weak anisotropy interactions, we employ a perturbative treatment, and show that the Hartree and extended Hartree approximations lead to reliable analytic results at low TT and large BB for these quantities and for the inelastic neutron scattering cross-section S(B,q,ω)S({\bf B}, {\bf q},\omega). Our results are discussed with regard to existing M(B){\bf M}({\bf B}) experiments on s1=5/2s_1=5/2 Fe2_2 dimer single molecule magnets, and suggest that one of them contains a substantial amount of single-ion anisotropy, without any sizeable global spin anisotropy. We urge further experiments of the above types on single crystals of Fe2_2 and on some s=9/2s_=9/2 [Mn4_4]2_2 dimers, in order to elucidate the precise values of the various microscopic interactions.Comment: 30 pages, 25 figures, submitted to Phys. Rev.

    Quasispecies evolution in general mean-field landscapes

    Full text link
    I consider a class of fitness landscapes, in which the fitness is a function of a finite number of phenotypic "traits", which are themselves linear functions of the genotype. I show that the stationary trait distribution in such a landscape can be explicitly evaluated in a suitably defined "thermodynamic limit", which is a combination of infinite-genome and strong selection limits. These considerations can be applied in particular to identify relevant features of the evolution of promoter binding sites, in spite of the shortness of the corresponding sequences.Comment: 6 pages, 2 figures, Europhysics Letters style (included) Finite-size scaling analysis sketched. To appear in Europhysics Letter

    Current Perspectives on the Use of Meditation to Reduce Blood Pressure

    Get PDF
    Meditation techniques are increasingly popular practices that may be useful in preventing or reducing elevated blood pressure. We reviewed landmark studies and recent literature concerning the use of meditation for reducing blood pressure in pre-hypertensive and hypertensive individuals. We sought to highlight underlying assumptions, identify strengths and weaknesses of the research, and suggest avenues for further research, reporting of results, and dissemination of findings. Meditation techniques appear to produce small yet meaningful reductions in blood pressure either as monotherapy or in conjunction with traditional pharmacotherapy. Transcendental meditation and mindfulness-based stress reduction may produce clinically significant reductions in systolic and diastolic blood pressure. More randomized clinical trials are necessary before strong recommendations regarding the use of meditation for high BP can be made

    Single-ion and exchange anisotropy effects and multiferroic behavior in high-symmetry tetramer single molecule magnets

    Full text link
    We study single-ion and exchange anisotropy effects in equal-spin s1s_1 tetramer single molecule magnets exhibiting TdT_d, D4hD_{4h}, D2dD_{2d}, C4hC_{4h}, C4vC_{4v}, or S4S_4 ionic point group symmetry. We first write the group-invariant quadratic single-ion and symmetric anisotropic exchange Hamiltonians in the appropriate local coordinates. We then rewrite these local Hamiltonians in the molecular or laboratory representation, along with the Dzyaloshinskii-Moriay (DM) and isotropic Heisenberg, biquadratic, and three-center quartic Hamiltonians. Using our exact, compact forms for the single-ion spin matrix elements, we evaluate the eigenstate energies analytically to first order in the microscopic anisotropy interactions, corresponding to the strong exchange limit, and provide tables of simple formulas for the energies of the lowest four eigenstate manifolds of ferromagnetic (FM) and anitiferromagnetic (AFM) tetramers with arbitrary s1s_1. For AFM tetramers, we illustrate the first-order level-crossing inductions for s1=1/2,1,3/2s_1=1/2,1,3/2, and obtain a preliminary estimate of the microscopic parameters in a Ni4_4 from a fit to magnetization data. Accurate analytic expressions for the thermodynamics, electron paramagnetic resonance absorption and inelastic neutron scattering cross-section are given, allowing for a determination of three of the microscopic anisotropy interactions from the second excited state manifold of FM tetramers. We also predict that tetramers with symmetries S4S_4 and D2dD_{2d} should exhibit both DM interactions and multiferroic states, and illustrate our predictions for s1=1/2,1s_1=1/2, 1.Comment: 30 pages, 14 figures, submitted to Phys. Rev.

    Turbulence in a global magnetohydrodynamic simulation of the Earth's magnetosphere during northward and southward interplanetary magnetic field

    Get PDF
    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity
    corecore