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Abstract.  To perform a task a subject executes mental processes.  An experimental manipulation, such 

as a change in stimulus intensity, is said to selectively influence a process if it changes the duration of 

that process leaving other process durations unchanged.  For random process durations a definition of a 

factor selectively influencing a process by increments is given in terms of stochastic dominance (also 

called “the usual stochastic order”.   A technique for analyzing reaction times, Sternberg's Additive 

Factor Method, assumes all the processes are in series.  When all processes are in series, each process 

is called a stage.  With the Additive Factor Method, if two experimental factors selectively influence 

two different stages by increments, the factors will have additive effects on reaction time.  An 

assumption of the Additive Factor Method is that if two experimental factors interact, then they 

influence the same stage.  We consider sets of processes in which some pairs of processes are 

sequential and some are concurrent (i. e., the processes are partially ordered).  We propose a natural 

definition of a stage for such sets of processes.  For partially ordered processes, with our definition of a 

stage, if two experimental factors selectively influence two different processes by increments, each 

within a different stage, then the factors have additive effects.  If each process selectively influenced by 

increments is in the same stage, then an interaction is possible, although not inevitable.   
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 In many situations it is natural to assume that one mental process follows another, for example, 

that a response movement follows response selection.  Such serial processing is assumed in the classic 

paper of Donders (1868), and in modern work by Sternberg (1969), Ratcliff (1978) and others.  The 

popularity of the assumption is largely due to the elegance of the test for it, Sternberg's (1969) Additive 

Factor Method.  See Thomas (2006) for recent applications.     

 To use the method to analyze a task, the experimenter manipulates two factors, such as stimulus 

intensity and response movement difficulty.  Suppose the task is carried out with a series of processes, 

say, perception, followed by response selection, followed by movement.  When all processes are in 

series, each process is called a stage.  Suppose the response time is the sum of the durations of the 

stages.  When the stimulus is made less intense, suppose the duration of perception increases but 

durations of other stages are unchanged.  When response movement difficulty is increased, suppose 

movement duration increases, but durations of other stages are unchanged.  Then the combined effect 

on response time of making the stimulus less intense and of increasing movement difficulty will be the 

sum of their individual effects.  Factors with additive effects on response time are called additive 

factors; otherwise they are said to interact.   

 A factor that changes the duration of a single stage, leaving durations of other stages 

unchanged, is said to selectively influence the stage.  A deduction from the assumptions is that if each 

of two factors selectively influences a different stage, the factors will be additive.  Hence, additive 

factors found in an experiment provide empirical support for the assumption that the factors selectively 

influence different stages.  With the Additive Factor Method data are interpreted as follows (Sternberg, 

1969).  If two factors are additive, then they influence different stages in a series of stages, and if two 

factors interact then they influence the same stage (and there may or may not be other stages).  The 

conclusions are plausible, but not deductions from the assumptions.  That is, additivity of two factors 

can be explained by saying they selectively influence two different stages, and an interaction can be 
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explained by saying they selectively influence the same stage, but the explanations are not logical 

implications.   

 Here we consider additivity of factors when both sequential and concurrent processes are 

executed.  In dual tasks it is often assumed that some processes, such as peripheral processes, are 

concurrent while others, such as central processes, are sequential (Davis, 1957; Ehrenstein, 

Schweickert, Choi, Proctor, 1997; Meyer & Kieras, 1997a, 1997b; Pashler & Johnston, 1989; Welford, 

1959, 1967).  For example, a model in which one process is concurrent with two sequential processes is 

in Figure 1; each arc represents a process.  This model was used by Schweickert, Fortin and Sung 

(2007) for a dual time production and visual search task.  In the model, two experimental factors 

selectively influencing the two sequential processes may be additive or not, depending on whether the 

process concurrent with them is short or long (Schweickert & Townsend, 1989).     

 The model in Figure 1 is a directed acyclic network.  Models in which all processes are in series 

or all are in parallel (e. g., Townsend, 1972) are special cases of directed acyclic networks.  Directed 

acyclic networks are especially useful for models with both sequential and concurrent processing.  

These include the dual task models mentioned above, as well as models for detection (Townsend & 

Nozawa, 1995), for search (Sung, 2008; Van Zandt & Townsend, 1993), for stimulus-response 

compatibility (Kornblum, Hasbroucq & Osman, 1990), and for aging (Fisher & Glaser, 1996).  An 

example in human factors is the model for a telephone operator task by Gray, John & Atwood, 1993; 

see also Schweickert, Fisher & Proctor, 2003.  Directed acyclic network models of tasks are themselves 

a special case of Order-of-Processing Diagrams, which are useful for deriving expressions for 

probability distribution functions and their moments (Fisher & Goldstein, 1983; Fisher, Saisi & 

Goldstein, 1985; Goldstein & Fisher, 1991, 1992).   

 

Directed Acyclic Task Networks:  The Graph   
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 A directed network consists of vertices and, for some pairs of vertices, an arc directed from one 

vertex to the other.  A starting vertex of a network has no arc directed into it.  In a cognitive task, 

processing begins with presentation of a stimulus at a starting vertex of the network.  A mental process 

is represented by an arc directed from one vertex to another.  The starting vertex of the arc, at the tail 

of the arc, represents the starting point of the process.  The ending vertex of the arc, at the head of the 

arc, represents the finishing point of the process.  An ending vertex of the network is a vertex with no 

arc directed from it.  Responses are made at the ending vertices of the network.  We will assume the 

network has a single starting vertex and a single ending vertex.     

 A path from a vertex u to a vertex z consists of the vertex u, followed by an arc directed from u 

to a vertex v, followed by an arc directed from v to a vertex w, and so on, with the last arc having 

ending vertex z.  We consider a single vertex to be a path.  A nontrivial path has at least one arc.  To 

indicate that one process immediately precedes another, the head of the arc representing the first 

process is incident with the tail of the arc representing the second.  If one process precedes another (not 

necessarily immediately), there will be a path from the head of the arc representing the first process to 

the tail of the arc representing the second; the path goes along arcs in the direction indicated by the 

arrows.  A vertex preceding a process, and so on, are defined similarly, with the requirement that for 

one vertex to precede another there must be a nontrivial path from one to the other.   

 A cycle is a nontrivial path that goes from a vertex u to the same vertex u.  An acyclic network 

has no cycles, so a vertex or process does not precede itself.  Thus, precedence is irreflexive.  We also 

assume precedence is transitive, that is, if process x precedes process y, and process y precedes process 

z, then x precedes z.  Two processes are sequential if one precedes the other; otherwise they are 

concurrent.  (Note that concurrent processes are not necessarily executed simultaneously in time.)  

Arcs in a directed acyclic network are partially ordered by precedence; that is, precedence is irreflexive 

and transitive.   
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 A process whose starting vertex is at an AND gate begins execution as soon as all processes 

immediately preceding it are finished.  A process whose starting vertex is an OR gate begins execution 

as soon as any process immediately preceding it is finished. Some processes have their ending vertex at 

a response.  If the response is made as soon as all these processes are finished, the response is at an 

AND gate, and if the response is made as soon as any of these processes are finished, the response is at 

an OR gate.  Here we assume that except for the starting vertex, every vertex is an AND gate or every 

vertex is an OR gate.  In the former case the network is called an AND network and the latter case an 

OR network.  In scheduling theory, AND networks are known as PERT (Program Evaluation and 

Review Technique) networks or critical path networks (Kelley & Walker, 1959; Malcom, Roseboom, 

Clark & Fazar, 1959).  

 

Directed Acyclic Task Networks:  The Durations 

 Associated with every arc z in the network is a nonnegative random variable, D(z), the duration 

of the process the arc represents.  A value the random variable D(z) can take on is denoted d(z).  The 

duration of a path is the sum of the durations of all the arcs on it.  The duration of a vertex is 0.  The 

network with the durations omitted is called a graph.   

 On a particular trial, we assume that values for the durations of the processes are chosen 

according to the joint probability distribution of the process durations.  In an AND network, all the 

processes must be completed for the task to be completed.  The time required to complete the task is 

the time required to complete every process on the longest path from the starting vertex of the network 

to the ending vertex.  This path is called the critical path, and the response time is the duration of the 

critical path.  In an AND network, the duration of the longest path from a vertex u to a vertex v on a 

particular trial is denoted d(u,v).  When the notation d(u,v) is used here, vertex u always precedes 

vertex v.  The path which is the longest path from u to v may vary from trial to trial.  In the population 
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of trials, the duration of the longest path from u to v is a random variable denoted D(u,v).  Note when 

the symbol d or D is used to denote a function of a single argument, the argument is an arc, and when it 

is used to denote a function of two arguments, the arguments are vertices, with the first vertex listed 

preceding the second.   

 Townsend and Nozawa (1995) have shown that both AND networks and OR networks are 

useful as models of mental processes.  In an OR network, the time required to complete the task, the 

response time, is the time required to complete every process on the shortest path from the starting 

vertex to the ending vertex of the network.  We use the same notation for OR networks and AND 

networks, with different terminology.  In an OR network, the duration of the shortest path from a vertex 

u to a vertex v on a particular trial is denoted d(u,v).  In the population of trials, the duration of the 

shortest path from u to v is a random variable, denoted D(u,v).   

    

Effects of Factors Selectively Influencing Processes 

 If all the processes are sequential, we say the processes are in series.  In that case if a certain 

process is prolonged by some amount the response time will increase by that amount.  The situation is 

more complicated when concurrent processes are present, but their presence makes effects of factors 

potentially very informative about the form of the network.  In this section we summarize some results 

relevant here from earlier papers on Task Network Inference, the construction, from observed effects of 

factors, of a directed acyclic network in which the factors selectively influence processes (Schweickert, 

1978, 1992; Schweickert & Wang, 1993).   

    

 In the beginning of the paper, processes with fixed durations are considered and a simple notion 

of what it means for a factor to selectively influence a process will suffice.  Later in the paper, random 

process durations are considered.  A definition of selective influence by Dzhafarov and his colleagues 
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is discussed.  The notion of selective influence from the beginning of the paper is generalized to the 

notion of selective influence by increments.  Complexities easily arise (Townsend & Thomas, 1994), 

and for further discussion see Townsend and Schweickert (1989), Dzhafarov (2003), Dzhafarov and 

Gluhovsky (2006), Dzhafarov and Kujala (2010), Dzhafarov, Schweickert & Sung (2004), and Kujala 

and Dzhafarov (2008).  

  Selective influence of a single process.  Suppose the duration of every process z in the network 

is assigned a real number value d(z) > 0.  Now suppose the duration of a particular process x is 

prolonged by an amount a > 0.  Consider an AND network; results are analogous for an OR network.  

If x is on the critical path, the response time increases by a.  If x is not on the critical path, then there is 

some amount of time by which x can be prolonged without increasing the response time.  The largest 

amount of time by which x can be prolonged without increasing the response time is called the total 

slack for x.  Let r denote the ending vertex of the network (typically where the response is made).  The 

total slack for x is denoted s(x,r).  Suppose process x is prolonged by amount a.  If a < s(x,r) there is no 

increase in response time.  If a > s(x,r) the increase in response time is a - s(x,r).  Let [w]+ = 0 if w < 0, 

and let [w]+ = w if w > 0.  Then the increase in response time is [a - s(x,r)]+.   

 Selective influence of two processes.  Suppose process x precedes process y.  Again, consider an 

AND network.  The combined effect of prolonging both x and y is complicated by the fact that 

prolonging x may make y start late, and the further effect on response time of prolonging y depends on 

whether it starts late or not.  Let y' denote the starting vertex of y.  The largest amount of time by which 

x can be prolonged without delaying the time at which y begins is the slack from x to y', denoted s(x,y').  

More detail is in Schweickert (1978) for AND networks and in Schweickert and Wang (1993) for OR 

networks.   

 Here, we usually need only consider process durations as fixed nonnegative numbers, and 

consider a factor selectively influencing a process as increasing its duration by a fixed nonnegative 
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number.  Suppose a factor selectively influences process x and another factor selectively influences 

process y.  Suppose when both factors are at level 1, each process z has a duration d(z).  Slacks for 

these values of the process durations can be calculated as follows (Schweickert, 1978).  Let o denote 

the starting vertex of the network (typically stimulus onset).  Let z' and z" denote, respectively, the 

starting and ending vertices of a process z.  Then 

 s(x,r) = d(o,r) - d(o,x') - d(x) - d(x",r), and 

 s(x,y') = d(o,y') - d(o,x') - d(x) - d(x",y').   

The first equation says the total slack for x is the duration of the longest path from the starting vertex, o, 

of the network to the ending vertex, r, minus the duration of the longest such path going through x.  

The second equation is obtained as follows.  Remove all vertices and edges that follow y'.  Then y' is 

the ending vertex of the network.   When the first equation is applied to the remaining network, the 

result is the second equation.   

 Another useful quantity is obtained by reversing the directions of all the arcs in the network, 

keeping the arc durations the same.  The resulting network is called the converse network.  If x 

precedes y in the original network, then y precedes x in the converse network.  In the converse network, 

let the slack from y to x be s*(y,x").  Then by applying the second equation above, an expression for 

s*(y,x") can be found in terms of path durations in the original network,  

 s*(y,x") = d(x",r) - d(x",y') - d(y) - d(y",r).  

Define the coupled slack between x and y in an AND network as 

 k(x,y) = s(x,r) - s(x,y') = s(y,r) - s*(y,x") = d(o,r) - d(o,y') - d(x",r) + d(x",y').   

In an OR network, we use the same notation for an analogous term.  In an OR network, we define the 

coupled slack between x and y, with x preceding y, as  

 k(x,y) = d(o,r) - d(o,y') - d(x",r) + d(x",y').   

(The symbols are the same as for an AND network, but recall that in an OR network, d(u,v) denotes the 
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duration of the shortest path between vertices u and v.)    

 The following notation is the same for both AND and OR networks.  Let t11 denote the response 

time when the factor selectively influencing process x and the factor selectively influencing process y 

are both at level 1; then t11 = d(o,r).  When the factor selectively influencing process x is at level 2, and 

the factor selectively influencing y is at level 1, suppose the duration of process x is prolonged by 

amount a, to become d(x) + a, but all other process durations are unchanged.  Denote the new response 

time as t21.   

 When the factor selectively influencing process y is at level 2, and the factor selectively 

influencing x is at level 1, suppose the duration of process x is returned to d(x), as before, and suppose 

the duration of process y is prolonged by amount b, to become d(y) + b, with all other process durations 

unchanged.  Denote the new response time as t12.  Finally, when both factors are at level 2, suppose x is 

prolonged by a and y is prolonged by b, with the duration of every other process z unchanged from its 

original value d(z).  Denote the new response time as t22.   

 Suppose in addition to processes x and y, there are n other processes, z1, . . . , zn.  The interaction 

contrast t22 - t21 - t12 + t11 is a function of the process durations d(x), d(y), d(z1), . . . , d(zn) and 

prolongations a and b.  (Note that t22 – t21 = t12 – t11 if there is no interaction, i.e., t22 - t21 - t12 + t11 = 0).   

Call the interaction contrast function h, that is,   

t22 - t21 - t12 + t11 = h(a,b,d(x),d(y),d(z1), . . . ,d(zn)). 

In Schweickert (1978) it is shown that for an AND network,  

h(a,b,d(x),d(y),d(z1), . . . ,d(zn)) = [b - s(y,r)  - [a - s(x,r)]+ + [a - s(x,y')]+]+ - [b - s(y,r)]+.           (1) 

 The above expression takes a simple form when a > s(x,r), s(x,y') and b > s(y,r), s*(y,x'').  The 

combined effect of prolonging x by a and y by b is then equal to the coupled slack; that is, the 

interaction contrast is 

t22 - t21 - t12 + t11 =  s(x,r) - s(x,y') = k(x,y), 
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(Schweickert, 1978).  The same expression holds for OR networks (Schweickert & Wang, 1993).     

 A factor selectively influencing x and a factor selectively influencing y with the parameters just 

described will be additive if the coupled slack k(x,y) = 0.  With AND and OR networks, it is possible 

that k(x,y) is negative, zero or positive.  With an AND network, a negative value can only occur if the 

network contains a subnetwork in the form of a Wheatstone bridge (Schweickert, 1978).  Likewise, 

with an OR network, a positive value of k(x,y) can only occur if the network contains a subnetwork in 

the form of a Wheatstone bridge (Schweickert & Wang, 1993).  (For illustration, in Figure 2 vertex c 

and the part of the network to the left of vertex c form a Wheatstone bridge.)         

   

Additive Factors and Stages 

 After these preliminary remarks, we take up additivity of factors selectively influencing 

processes in AND or OR networks.  We give a natural definition of stages in such networks; these 

stages are sets of processes.  Each stage can be considered a superprocess, and the superprocesses are 

in series.  The superprocesses in series have properties analogous to processes in series.   

   Sometimes factors selectively influencing processes x and y will have, or not have, additive 

effects depending on the duration of some other process.  See, for example, processes x and y in the 

AND network of Figure 1.  With a short duration of process z, prolonging x and prolonging y will 

produce additive effects.  But with a long duration of z, additivity is not produced by prolonging x and 

y.  Little can be concluded from the fact that additivity occurs for one certain set of process durations 

and prolongations of x and y.  Let us say that additivity follows from network structure if for all 

assignments of numbers as process durations and as prolongations produced by the factors, the two 

factors selectively influencing the processes x and y have additive effects.   

 In more detail, suppose there are n process in addition to processes x and y.  Consider an 

assignment of nonnegative real numbers d(x), d(y), d(z1), . . . , d(zn) as durations of processes x, y, z1, . . 
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. , zn, respectively.  As before, let t11 denote the duration of the task with this assignment.  Consider 

nonnegative real numbers a and b as prolongations of x and y, respectively.  In the expression tij, 

subscript i = 1 when x has duration d(x) and i = 2 when x has duration d(x) + a.  Subscript j = 1 when y 

has duration d(y) and j = 2 when y has duration d(y) + b.  Additivity follows from network structure if 

for all nonnegative a, b, d(x), d(y), d(z1), . . . , d(zn),  

t22 - t21 - t12 + t11 = h(a,b, d(x), d(y), d(z1), . . . , d(zn)) = 0. 

By considering the possibilities in Equation (1), it can be seen that the interaction contrast 

h(a,b,d(x),d(y),d(z1), . . . ,d(zn))  = 0 for all values of its arguments iff the coupled slack k(x,y) = 0 for all 

process durations.   

 Now consider the network in Figure 2.  Vertex c is called a cut vertex (sometimes called a 

vertex of articulation); a definition will be given in a moment.  It is obvious that if one factor prolongs 

a single process to the left of vertex c and another factor prolongs a single process to the right of c, the 

factors will have additive effects on mean response time.  We will show that additivity of factors 

selectively influencing x and y is a consequence of network structure if and only if there is a cut vertex 

between x and y.   

 We define the part of an acyclic task network from the starting vertex of the network to the first 

cut vertex as the first stage, the part from the first cut vertex to the second cut vertex as the second 

stage, and so on.  With this natural definition of stages, we will see that two factors selectively 

influencing different processes have additive effects following from network structure if and only if the 

processes are in different stages.  With this definition, if two factors selectively influence processes x 

and y, and the factors sometimes interact, then processes x and y are in the same stage.   

 

Further Definitions and Assumptions 

 The directed acyclic network for a task is assumed to be weakly connected, that is, it is possible 
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to go along arcs from any given vertex to any other vertex, ignoring the directions of the arcs.  A cut 

vertex of a weakly connected directed graph is a vertex v such that if v and all arcs incident with v (i.e., 

arcs with v as the starting or ending vertex) are removed, the resulting directed graph is not weakly 

connected.  It is easy to see that in a directed acyclic graph with one starting vertex o and one finishing 

vertex r, a vertex v different from o and r is a cut vertex if and only if every directed path from o to r 

contains v.  

 Let f[d(a,b), . . . , d(m,n)] and g[d(u,v), . . . , d(w,z)] be functions of the indicated path durations 

d(a,b), and so on.  If for all possible values of the path durations in the arguments of f and g, f[d(a,b), . . 

. , d(m,n)] = g[d(u,v), . . . , d(w,z)] then we write 

f[d(a,b), . . . , d(m,n)] ≡ g[d(u,v), . . . , d(w,z)]. 

Clearly ≡  is an equivalence relation; that is, it is reflexive, symmetric and transitive.  (The relation is 

sometimes called identity.)   

Additivity Following from Network Structure 

 If processes x and y are concurrent, and selectively influenced by two factors, there are 

probability distributions of the durations which yield a negative interaction (Schweickert, 1978; 

Schweickert & Townsend, 1989, Theorem 1).  Hence, for additivity to follow from network structure, 

the selectively influenced processes must be sequential.  We have seen that factors selectively 

influencing x and y have additive effects following from network structure if and only if the coupled 

slack k(x,y) ≡ 0; that is, the value of the coupled slack on a particular trial is 0 no matter what the 

durations of the processes are for that trial.  According to the following theorem, this occurs if and only 

if there is a cut vertex between x and y. 

 Theorem.  Let x and y be two sequential arcs in a directed acyclic AND network or OR 

network.  The coupled slack k(x,y) ≡ 0 if and only if there is a cut vertex between x and y. 

 Before proving the theorem, we prove the following lemma. 
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 Lemma.  Suppose the following vertices are listed in their order of precedence in an AND or 

OR network:  u, v1, v2, . . . , vn, w.  Vertices v1, v2, . . . , vn are on every path from u to w if and only if 

d(u,w) ≡ d(u,v1) + d(v1,v2) + . . . + d(vn,w).   

 Proof of Lemma:  Clearly, if v1, v2, . . . , vn are on every path from u to w, the equation holds. 

 Suppose d(u,w) ≡ d(u,v1) + d(v1,v2) + . . . + d(vn,w).  Suppose some path P from u to w does not 

contain vh, for some h, 1 < h < n.  Let h be the smallest integer for which vh is not on P.  Let v0 denote 

the vertex u and let vn+1 denote the vertex w.  Let k be the first integer to follow h for which vk is on the 

path P.  Consider an AND network; the argument for an OR network is similar.  One of the arcs, say a, 

on the section of the path P from vh-1 to vk can be prolonged to increase the duration of the path P 

without increasing any of the durations d(vh-1, vh), d(vh,vh+1), . . . , d(vk-1, vk).  The arc a follows vh-1, so 

prolonging a does not increase any of the durations d(vi-1,vi) for i < h - 1.  Likewise, the arc a precedes 

vk, so prolonging a does not increase any of the durations d(vi,vi+1) for i > k.  Then the new duration 

d(u,w) > d(u,v1) + . . . + d(vh-2,vh-1) + d(vh-1,vh) +  . . . + d(vk-1,vk) + d(vk,vk+1) +  . .  . + d(vn,w).  This 

contradicts the original assumption.                                                                    QED 

 

 Before starting the proof, recall that the starting and ending vertices of an arc x are denoted x' 

and x", respectively.  Let d(u,v) denote the duration of the path from u to v of longest duration, if all 

vertices are AND gates, or of shortest duration, if all vertices are OR gates.  Recall that in either case, 

k(x,y) = s(x,r) - s(x,y') = s(y,r) - s*(y,x") = d(o,r) - d(o,y') - d(x",r) + d(x",y') (Schweickert, 1978; 

Schweickert & Wang, 1993). 

 Proof of Theorem:  Without loss of generality, relabel the arcs so x precedes y.  Suppose c is a 

cut vertex between x and y.  It is easy to see that s(x,r) ≡ s(x,y') ≡ s(x,c).   Then k(x,y) ≡ s(x,r) - s(x,y') ≡ 

0. 

 For the proof in the other direction, suppose k(x,y) ≡ 0.  Then d(o,r) - d(o,y') - d(x",r) + d(x",y') 
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≡ 0.  There are three cases. 

 Case 1.  Suppose y' is on every path from x" to r.  Then d(x",r) ≡ d(x",y') + d(y',r), so 

0 ≡ k(x,y) ≡ d(o,r) - d(o,y') - d(x",y') - d(y',r) + d(x",y'), 

so d(o,r) ≡ d(o,y') + d(y',r). 

Then by the lemma above, y' is on every path from o to r, so y' is a cut vertex between x and y. 

 Case 2.  Suppose x" is on every path from o to y'.  Then d(o,y') ≡ d(o,x") + d(x",y'), so  

0 ≡ k(x,y) ≡ d(o,r) - d(o,x") - d(x",y') - d(x",r) + d(x",y'), 

so d(o,r) ≡ d(o,x") + d(x",r). 

Then by the lemma above, x" is on every path from o to r, so x" is a cut vertex between x and y. 

 Case 3.  If neither case 1 nor case 2 applies, then there is some path from x" to r not containing 

y' and there is some path from o to y' not containing x".  Then x" and y' are not the same vertex.  Since x 

precedes y, there is at least one nontrivial path C from x" to y'. 

 Let {p1, p2, . . . , pm} be the vertices on every path from x" to y' and also on every path from x" 

to r.  This set is nonempty because x" is such a vertex.  The vertices in the set are on all paths in the 

same order, suppose in the order as listed.  Denote pm by p. 

 Let {q1, q2, . . . , qn} be the set of all vertices on every path from o to y' and also on every path 

from x" to y'.  This set is nonempty because y' is such a vertex.  These vertices are on all paths in the 

same order, say, in the order listed.  Denote q1 by q. 

 Vertices p and q are on a path together since there is at least one path from x" to y', and both p 

and q are on it.  If a vertex u precedes a vertex v different from u, we write u < v.  There are three cases, 

p < q, p = q, and q < p. 

 Case 3a.  Suppose p < q.  Then there is a path from p to q, so x and y are in a Wheatstone bridge 

on opposite sides of the bridge.  Then if the network is a longest path network, there is an assignment 

of the process durations such that k(x,y) < 0.  If the network is a shortest path network, there is an 
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assignment of the process durations such that k(x,y) > 0.  Each contradicts the hypothesis of the 

theorem. 

 Case 3b.  Suppose p = q.  From the lemma above and the definition of p and q, 

 d(x",y') ≡ d(x",p) + d(p,y') 

 d(x",r) ≡ d(x",p) + d(p,r) 

 d(o,y') ≡ d(o,p) + d(p,y'). 

Then, by substitution, 

 0 ≡ k(x,y) ≡ d(o,r) - d(o,y') - d(x",r) + d(x",y') 

                  ≡ d(o,r) - d(o,p) - d(p,y') - d(x",p) - d(p,r) + d(x",p) + d(p,y') 

                  ≡ d(o,r) - d(o,p) - d(p,r). 

Then d(o,r) ≡ d(o,p) + d(p,r) and by the lemma p is on every path from o to r.  Then p is a cut vertex 

between x and y. 

 Case 3c.  Suppose q <  p.  Consider any path from x" to p. Since p < y', this path can be 

extended to a path from x" to y'. By the definition of q, q must be on this extended path, and since q < 

p, q must precede p on this path.  Then q is on every path from x" to p.  Then d(x",p) ≡ d(x",q) + d(q,p).  

Since p is on every path from x" to r, 

    d(x",r) ≡ d(x",p) + d(p,r) ≡ d(x",q) + d(q,p) + d(p,r).  

 Likewise, p is on every path from q to y', so d(q,y') ≡ d(q,p) + d(p,y'). 

Then since q is on every path from o to y' 

    d(o,y') ≡ d(o,q) + d(q,y') = d(o,q) + d(q,p) + d(p,y').  

 Finally, by definition, p is on every path from x" to y', so 

   d(x",y') ≡ d(x",p) + d(p,y') = d(x",q) + d(q,p) + d(p,y').    

 Then, by substitution, 

  0 ≡ k(x,y) ≡ d(o,r) - d(o,y') - d(x",r) + d(x",y') 
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     ≡ d(o,r) - d(o,q) - d(q,p) - d(p,y') - d(x",q) - d(q,p) 

          - d(p,r) + d(x",q) + d(q,p) + d(p,y') 

               ≡ d(o,r) - d(o,q) - d(q,p) - d(p,r).  

Then d(o,r) ≡ d(o,q) + d(q,p) + d(p,r) and by the lemma p is on every path from o to r, as is q, so p and 

q are both cut vertices between x and y.   QED.   

 

 It immediately follows that prolonging x and prolonging y will have additive effects following 

from network structure if and only if there is a cut vertex between x and y. 

 

Random Process Durations 

 We now consider process durations which are nonnegative random variables.  On the one hand, 

if there is a cut vertex c between process x and process y, then no matter what the distribution of 

process durations is, the response time is the sum of two random variables, D(o,c) + D(c,r), where o is 

the starting vertex of the network and r is the ending vertex.  For all but exotic definitions of what it 

means for a factor to selectively influence a process, a factor selectively influencing process x changes 

the first random variable and a factor selectively influencing process y changes the second random 

variable.  It is straightforward that the factors are additive. 

 On the other hand, if there is no cut vertex between processes x and y, then according to the 

above theorem there exists at least one set of values of the process durations such that the coupled slack 

k(x,y) is not 0.  If there were only one such set of values for which k(x,y) ≠ 0, one would be concerned 

that in an experiment these particular values would occur with probability 0, so an interaction would 

not be observed.   (Recall that for long prolongations, k(x,y) equals the interaction.)  In the following 

corollary we show that if k(x,y) ≠ 0 for one set of process durations then k(x,y) has the same sign 

throughout a region of positive volume in the space of process durations.  The second result of the 
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corollary shows it is theoretically possible for an experiment to produce a joint probability distribution 

of process durations and prolongations with positive probability over a region that leads to an 

interaction.  Because the result is intuitively clear, the proof is not written out for all cases; its main 

purpose is to make explicit the details that need to be checked.   

 Selective influence.  We now discuss factors selectively influencing process durations, when 

process durations are random variables.  One technical problem is that typically on a given trial in an 

experiment a factor is either at one level or another, but not both.  For a particular process, it is natural 

to define the duration of a process as one random variable when a factor influencing it is at one level, 

and as another random variable when the factor is at another level.  This is sufficient for some 

purposes, but a problem arises when one wants to combine the random variables by, say, addition, 

because they are not necessarily defined on the same probability space.  (One could add the reaction 

time for the first trial at level 1 of a factor to the reaction time for the first trial at level 2.  But this 

pairing of the trials at the two levels is an arbitrary choice from many possibilities.)  We discuss this 

problem after explaining notation.   

 A capital letter, e. g., W, denotes a random variable, and the corresponding small letter, w, 

denotes a real number value the random variable takes on.   A random vector with n components is an 

ordered list of n random variables, W = <W1, . . . , Wn> that have a joint cumulative probability 

distribution.  A vector of values taken on by the components of W is denoted w. 

 The joint cumulative probability distribution function of a random vector W with n components 

is the function FW(w) defined for every vector w with n real components,  

FW(w) = P(W < w) = P(W1 < w1, . . . , Wn < wn). 

The marginal cumulative probability distribution for a single random variable Wk is Fk(wk) = P(Wk < 

wk).   

 If two random vectors W and Ŵ have the same joint cumulative probability distribution 
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function, we write W ≈ Ŵ.  Note that this relation requires that W and Ŵ have the same number of 

components, but it does not require that they be defined on the same probability space.  For example, 

suppose we set W to 1 for a head in a coin toss and to 2 for a tail, and we set Ŵ to 1 for an odd number 

in a roll of a die and to 2 for an even number.  Then W and Ŵ have the same probability distribution, 

but they are not defined on the same probability space.   

 Let i denote the level of Factor Α, with i = 1, . . . , I..  Likewise, let j denote the level of 

Factor B, with j = 1, . . . , J.  Let the processes be denoted x, y, z1, . . . , zn.  When Factor Α is at level 

i and Factor B is at level j, let the duration of an arbitrary process w be denoted W(ij); it is a random 

variable.  In our earlier notation, the random variable duration of process w was denoted D(w);  to 

reduce multiple parentheses we modify the notation for this section.  Note that w is the label of a 

process and also denotes a real number value that the duration of this process takes on; the meaning is 

determined by context.   

 A useful and general definition of factors selectively influencing random variables has been 

developed by Dzhafarov and his colleagues (Dzhafarov, 2003; Dzhafarov & Gluhovsky, 2006; 

Dzhafarov & Kujala, 2010; Kujala & Dzhafarov, 2008).  Among other things, it resolves the problem of 

having different probability spaces for different levels of factors.  After explaining this definition, we 

explain a stronger assumption needed for our purposes, selective influence by increments.  If selective 

influence by increments occurs, selective influence in the sense of Dzhafarov and his colleagues also 

occurs.   

 Suppose when Factor Α is at level i and Factor B is at level j there is a probability space with the 

random variables for process durations defined on it; that is, the multivariate random variable 

<X(ij),Y(ij),Z1(ij), . . . ,Zn(ij)> is defined on this probability space.  Suppose the random vector <X,Y,Z1, 

. . . ,Zn> is a member of the family of random vectors {<X(ij),Y(ij),Z1(ij), . . . ,Zn(ij)>| i = 1, . . . , I; j = 1, 
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. . . , J}.  Then <X,Y,Z1, . . . ,Zn> is said to depend on Factor Α and Factor B. 

 As needed here, the definition of factors selectively influencing random variables by Dzhafarov 

and his colleagues can be put in the following form.  The original papers give more general 

formulations and details (Dzhafarov, 2003; Dzhafarov & Gluhovsky, 2006; Dzhafarov & Kujala, 2010; 

Kujala & Dzhafarov, 2008).  To start, consider two random variables.  Suppose the random vector 

<X,Y> depends on Factor Α and Factor B.  Random variables X and Y are selectively influenced by 

Factor Α and Factor B, respectively, if there is a random vector C defined on a probability space such 

that for every level i of Factor Α there is a function g1,i and for every level j of Factor B there is a 

function g2,j with 

<X,Y> ≈ <g1,i(C),g2,j(C)>. 

Now suppose there are several random variables.  Suppose the random vector <X,Y,Z1, . . . ,Zn> 

depends on Factor Α and Factor B.  Random variables X and Y are selectively influenced by Factor Α 

and Factor B, respectively, and random variables Z1, . . . ,Zn are not influenced by Factor Α or Factor B 

if there is a random vector C defined on a probability space such that for every level i of Factor Α there 

is a function g1,i and for every level j of Factor B there is a function g2,j and further there are functions 

g3, . . . , gn+2 with 

<X,Y,Z1, . . . ,Zn> ≈ <g1,i(C),g2,j(C),g3(C), . . . ,gn+2(C) >. 

Generalization is straightforward to a finite number of more factors and random variables.   

 Note that functions g3, . . . , gn+2 do not depend on i and j.  Hence for every pair of levels i and j  

Z1(ij) ≈ g3(C), 

so the distribution of Z1(ij) does not depend on level i or level j; the same is true for Z2(ij), . . . , Zn(ij)   

Also, because function g1,i does not depend on j, for every pair of levels i and j, 

X(ij) ≈ g1,i(C), 
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so the distribution of X(ij) depends on the level i of Factor Α but not the level j of Factor B.  We can 

write X(ij) simply as X(i).  Likewise, we can write Y(ij) simply as Y(j).   If the above definition of 

factors selectively influencing processes holds, the random vector C is defined on the same probability 

space for all levels i of Factor Α and j of Factor B.  The result is that although random variables such as 

X(11) and Y(22) may not be defined on the same probability space, each is equivalent to a random 

variable and the random variables they are equivalent to are defined on the same probability space 

(because they are functions of the same random vector, C).   

 For purposes here, when a factor selectively influences a process it must satisfy the definition 

above.  But another assumption is needed, that as the level of a factor selectively influencing a process 

increases, the duration of the process becomes longer.   

 

 

 Selective influence by increments.  The basic notion is simple.  Consider one factor and one 

process.  Roughly speaking, when Factor Α is at level 1, the duration of process x is a random variable 

X(1).  When Factor Α is at level 2, the duration of process x is this random variable plus a random 

variable increment U1.  When Factor Α is at level 3, the duration of process x is the random variable 

X(2) at level 2 plus a further random variable increment U2, and so on.  But to be precise, random 

variables cannot be added unless they are defined on the same probability space, so the notion and 

notation become more complicated.  We will begin with a set of random variables all defined on the 

same probability space and having a joint distribution.  One of these, baseX


, has the same distribution 

as X(1), that is, X(1) baseX


≈ .  Another of these, 2U


, is the amount by which the duration of process x is 

incremented when the level of Factor Α is increased from level 1 to level 2, that is, X(2) 2UX base


+≈ .  

Continuing in this way, X(i) ibase UUX





+++≈ 2 .   
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Now suppose random vector <X,Y,Z1, . . . ,Zn> depends on Factor Α and Factor B.  Suppose there is a 

random vector  

C = >< nbasebaseJI ZZYXVVUU











,,,,,,,,,, 122  > 0.   

Note that all random variables, including the increments, are nonnegative.  Suppose for every level i of 

Factor Α and every level j of Factor B 

.,,,,,,),(),( 1221 >++++++>≈<< njbaseibasen ZZVVYUUXZZijYijX











  

Then Factor Α and Factor B selectively influence by increments random variables X and Y, respectively.  

Generalization to a finite number of more factors and random variables is straightforward.   

 Clearly, if Factor Α and Factor B selectively influence by increments random variables X and Y, 

then they selectively influence X and Y according to the definition of Dzhafarov and his colleagues.   

 The definition of selective influence by increments leads to the following.  As before, let the 

processes be denoted x, y, z1, . . . , zn.  When Factor Α is at level i and Factor B is at level j, recall that 

the duration of an arbitrary process w is the random variable W(ij).  Suppose Factor Α selectively 

influences process x and Factor B selectively influences process y.  Then there exist nonnegative 

random variables nbasebase ZZYXVU ˆ,,ˆ,ˆ,ˆ,, 122 


, all defined on the same probability space, such that 

(1) when both factors are at level 1 

>≈< )11(,),11(),11(),11( 1 nZZYX  < nbasebase ZZYX ˆ,,ˆ,ˆ,ˆ
1  >; 

(2) when Factor Α  is at level 2 and Factor B is at level 1 

>≈< )21(,),21(),21(),21( 1 nZZYX  < nbasebase ZZYUX ˆ,,ˆ,ˆ,ˆ
12 


+ >; 

(3) when Factor Α  is at level 1 and Factor B is at level 2 

>≈< )12(,),12(),12(),12( 1 nZZYX  < nbasebase ZZVYX ˆ,,ˆ,ˆ,ˆ
12 


+ >; and  

(4) when both factors are at level 2,  
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>≈< )22(,),22(),22(),22( 1 nZZYX  < nbasebase ZZVYUX ˆ,,ˆ,ˆ,ˆ
122 


++ >. 

 In short, when the difficulty of process x is increased, the duration of process x is increased by 

the addition of a nonnegative random variable and when the difficulty of process y is increased, the 

duration of process y is increased by the addition of a nonnegative random variable.  Note that the 

added random variables 2U


 and 2V


 may be correlated with each other, and with the durations of other 

processes.  In particular, the random variable 2U


 may be positively or negatively correlated with the 

random variable baseX̂ .  This allows a variety of possible correlations between process durations.  For 

example, baseX̂  and baseY


 (durations of processes x and y when they are easy) can be positively 

correlated although baseX̂  + 2U


 and baseŶ  + 2V


(durations of processes x and y when they are difficult) 

are negatively correlated.   

 If Factor Α and Factor B selectively influence by increments random variables X and Y they 

order the process durations in a way we now explain.   

 Factors ordering random vectors.  An intuitive way to say a task is more difficult when Factor 

Α is at level 2 than when it is at level 1 is to say that any monotonic function of the durations of the 

processes in the task has greater expected value when Factor Α is at level 2 than when it is at level 1; 

and, if the influence of Factor Α is selective for process x, then the joint distribution of the durations of 

all processes except x is the same whether Factor Α is at level 1 or level 2.   

 Consider the following situation for Factor Α and Factor B each with two levels.  

  Condition (1):  For any function f of n + 2 arguments, f monotonically increasing in each 

argument separately,    

 E[f(X(22),Y(22),Z1(22), . . . Zn(22))] 

> E[f(X(12),Y(12),Z1(12), . . . Zn(12))],  E[f(X(21),Y(21),Z1(21), . . . Zn(21))] 
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                         >  E[f(X(11),Y(11),Z1(11), . . . Zn(11))].   

Further,  

 Condition (2):  For every j the joint probability distribution of Y(ij),Z1(ij), . . . Zn(ij) is the same 

for every i, and for every i, the joint probability distribution of X(ij),Z1(ij), . . . Zn(ij) is the same for every 

j.  

 It follows immediately from Condition (2) that for every i and every j, the joint probability 

distribution of Z1(ij), . . . Zn(ij) is the same.   

 The assumption in Condition (1) is that certain random variables have an ordering called 

stochastic dominance in Economics and called the usual stochastic order in Operations Research.  

Müller and Stoyan (2002) and Shaked and Shanthikumar (2007) provide useful reviews and Townsend 

(1990) provides a useful introduction.  Let Re denote the real numbers.  Random vector S is smaller 

than random vector W in the usual stochastic order if they have the same number of components, n, 

and if Ef(S) < Ef(W) for all  monotonically increasing functions f from Ren into Re, for which both 

expectations exist.  In that case, we write S <st W.  For random vectors the relation <st is stronger than 

the assumption that the corresponding joint cumulative distribution functions are ordered by <.  That is, 

for random vectors S and W, if S <st W, then FS(t) < FW(t), for all t, but the converse is not true.   

However, the situation is simpler for univariate random variables S and W (considered as random 

vectors with one component);  S <st W if and only if FS(t) < FW(t), for all t (e. g., Müller & Stoyan, 

2002, Theorem 1.2.8; Townsend & Schweickert, 1989).   

 The usual stochastic ordering is equivalent to another useful condition, which we restate here 

(see, e.g., Müller & Stoyen, Theorem 3.3.5):       

The following two statements are equivalent for random vectors S and W.   

 Statement (1):  S <st W. 

 Statement (2):  There exist random vectors Ŝ and Ŵ defined on the same probability space, with 



  25 

S ≈ Ŝ and W ≈  Ŵ, such that P(Ŝ <  Ŵ) = 1.   

 The usefulness of Statement (2) is subtle when first encountered, so here is an example.    

Suppose distributions of the heights of men and women have the stochastic dominance relation in 

Statement (1).  Directly from this statement one cannot define a random variable that is the difference 

between men’s and women’s heights because there is no (nonarbitrary) way to line up the men and 

women, i.e., the elementary experiments (selecting a man vs. selecting a woman) refer to different 

probability spaces.  However, by Statement (2) one can define random variables M and F on a single 

probability space, whose distributions match the heights of males and females respectively.  In this 

common probability space, each elementary experiment (i.e., trial) gives both a value of M and a value 

of F, so one can compute the difference. 

 Statement (2) above is equivalent to another statement useful for our purposes.  Suppose 

Statement (2) above is true.  Random vectors Ŝ and Ŵ are defined on the same probability space, so we 

can take their difference Û = Ŵ -  Ŝ.  Denote a vector of 0's with the same number of components as Û 

by 0.  Because P(Ŝ <  Ŵ) = 1,  P(0 <  Ŵ -  Ŝ) =  1, that is, P(0 < Û) = 1.   On the other hand, suppose Û 

is a random vector defined on the same probability space as Ŝ and Ŵ, every component of  Û is 

nonnegative, and Ŵ =  Ŝ + Û.  Then clearly P(Ŝ < Ŵ) = 1.  Hence, the following statement is 

equivalent to Statement (2) above, and thereby equivalent to Statement (1) above.   

 Statement (3):  There exist random vectors Ŝ and Û defined on the same probability space, with 

Û > 0, S ≈  Ŝ and W ≈  Ŝ + Û.   

For related work on univariate random variables see Townsend and Schweickert (1989).   

 As before, for every level i of Factor Α and every level j of Factor B suppose there is a 

probability space on which the random vector of process durations Dij = <X(ij),Y(ij),Z1(ij), . . . ,Zn(ij)> 

is defined.   Suppose whenever i' <i and j' < j,  Di'j' <st Dij.  Then we say Factor Α and Factor B order the 

random vectors  {Dij } with the usual stochastic order.   
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 By Statement (3) for every pair that is ordered, Di'j' <st Dij, there exist random vectors '' jiD


 and 

Û defined on the same probability space, with Û > 0, Di'j'   ≈  '' jiD


 and Dij ≈  '' jiD


+ Û.  This assures a 

common probability space for every pair of ordered random vectors, but it turns out it does not assure 

that the same probability space will serve for every pair, i. e., different pairs may require different 

probability spaces, see Fill and Machida (2001).  (We are grateful to E.N, Dzhafarov for pointing this 

out, personal communication, January 10, 2010.)  Consequently, if Factor Α and Factor B order the 

process durations with the usual stochastic order, the definition of selective influence by Dzhafarov and 

his colleagues may fail to hold.  Factors Α and B may not satisfy the definition of selective influence by 

increments.   

  The following condition is stronger than the usual stochastic order alone (Fill & Machida, 

2001).  Random vectors { Dij } are realizably monotone if there exist random variables }{ ijD


all defined 

on the same probability space such that for every i and j,  ≈ijD ijD


, and whenever i' < i and j' < j, '' jiD  

<st ijD .   

 In summary, suppose for every level i of Factor Α and every level j of Factor B random vector  

Dij = <X(ij),Y(ij),Z1(ij), . . . ,Zn(ij)> is defined on a probability space, and Factor Α and Factor B 

selectively influence by increments random variables X and Y, respectively.  Then Factor Α and Factor 

B selectively influence random variables X and Y, respectively, according to the defintion of Dzhafarov 

and his colleagues.  Further, Factors Α and B order the random vectors { Dij } with the usual stochastic 

order, and they are realizably monotone.   

 Regions leading to observable interactions.  We now consider real number values that can be 

taken on by the random variables nbasebase ZZYXVU ˆ,,ˆ,ˆ,ˆ,, 1 


.  We consider two levels of each factor; 

generalization to more levels is straightforward.  Let Re+ denote the nonnegative real numbers.  There 
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are n + 4 random variables, all defined on the same probability space, so their values are real numbers 

in Re+
n+4.  In the previous section, values of durations of processes were denoted by small letters.  We 

now return to our previous notation, and denote a value of the duration of a process zk by d(zk).   

 Consider process durations as a vector d = < d(x),d(y),d(z1), . . . ,d(zn) > ε Re+
n+2.  Consider 

prolongations (increments) of processes x and y as a vector u = <u,v> ε Re+
2, and process durations 

together with prolongations u and v as a vector e = <u,v,d(x),d(y),d(z1), . . . ,d(zn) > ε Re+
n+4.   We will 

replace the list of arguments of the function h in Equation (1) with the vector e whose components are 

those arguments.   

 Corollary.  Suppose there is no cut vertex between sequential arcs x and y in an AND or OR 

network.  Then 

 (a) there is a region R ⊆  Re+
n+2 of positive volume such that k(x,y) is nonzero, with the same 

sign, for all d ε R, and 

 (b) there is a region S ⊆  Re+
n+4 of positive volume such that h(e) is nonzero, with the same 

sign, for all e ε S.   

 Proof.  Suppose there is no cut vertex between sequential arcs x and y.  Consider an OR 

network; reasoning is similar for an AND network.  Let d0 be a vector of process durations for which 

k(x,y) is not 0.  For these durations k(x,y) = d(o,r) - d(o,y') - d(x",r) + d(x",y'), with d(u,v) denoting the 

duration of the shortest path between vertices u and v.   

 We consider arcs one by one.  An increase in the duration of arc z1 may change one or more 

path duration terms in the equation for k(x,y).  We will show that for each such path duration term m we 

can define a coefficient cm that determines the contribution of a small increase in the duration of z1 to 

the path duration term, and an upper limit Lm such that the coefficient applies when the increase is less 

than Lm.   
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 We start with the process z1, and for this process we start with the term d(o,r).  If z1 is not on a 

path of shortest duration between o and r, any increase in the duration of z1 will not change the duration 

of the shortest path between o and r.  Let c1 = 0 and L1 be ∞ .    

 If there is more than one path of shortest duration between o and r, and z1 is on one of them, an 

increase in the duration of z1 will not change the duration of some shortest path between o and r.  Let c1 

= 0 and L1 be ∞ .   

 Suppose there is exactly one path of shortest duration between o and r, and z1 is on it.  A small 

increase e in the duration of z1 will increase the duration of the path of shortest duration between o and 

r by e.  Let c1 = 1.  A large increase in the duration of z1 may result in some path not containing z1 

becoming the shortest path between o and r, so that further increases in the duration of z1 have no effect 

on the duration of the shortest path from o to r.  Let L1 denote the largest amount by which the duration 

of z1 can be increased and still remain on the shortest path between o and r.   

 In all cases, an increase e, 0 < e < L1, in the duration of z1 will produce an increase in d(o,r) of 

c1e.   

 The next term in the equation for k(x,y) is the duration of the shortest path between o and y'.  In 

the analogous way, a coefficient c2 and limit L2 are defined such that if the duration of z1 is increased 

by e, 0 < e < L2, the contribution to k(x,y) of the change in the shortest path between o and y' is c2e.  

The value of c2 is either 0 or -1 because the term d(o,y') is negative in the equation for k(x,y).   

 For the last two terms in the equation for k(x,y), in the analogous way, coefficients c3 and c4 and 

limits L3 and L4 are chosen.  Then, suppose the duration of z1 is increased by e, 0 < e < L1, L2, L3, L4.  

The value of k(x,y) is changed by eΣcm to become k(x,y) + eΣcm.   

 Suppose for the process durations in d0, k(x,y) > 0.  The reasoning if k(x,y) < 0 is similar.   

 If Σcm > 0, the new value of k(x,y) is positive.   

 If, instead, Σcm < 0, the new value of k(x,y) is positive if e < -k(x,y)/ Σcm.  Note that the 
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expression on the right hand side is positive.   

 Consequently, if d0(z1) denotes the duration of process z1 in d0, k(x,y) is positive for any 

duration of z1 in an interval of positive length having lower and upper limits 

d0(z1) < d0(z1) + min{ L1, L2, L3, L4, -k(x,y)/ Σcm}.   

 Suppose a value for the duration of z1 is chosen from the above interval.  Then k(x,y) > 0.  

Reasoning as before, for process z2 an interval of positive length can be found such that if the duration 

of z2 is in its interval, then k(x,y) > 0.  At this point, for any values of the durations of z1 and z2 within 

their respective intervals so constructed, k(x,y) > 0.  These steps can be repeated for each process.  An 

interval of positive length is found for each process duration, such that if we let R denote the Cartesian 

product of these intervals, and each process duration is within its interval, then k(x,y) > 0.     

 Reasoning for other cases is similar, completing the proof of (a).   

 For (b), let R be a region of positive volume such that for all d ε R, k(x,y) > 0.   

 For given process durations d ε R, values of s(x",r), s(x",y'), s(y",r) and s*(y,x") can be 

calculated.  For prolongations u and v, if u > s(x",r), s(x",y') and v > s(y",r), s*(y,x"), then h(e) > 0.   

 Let La = max{ s(x",r), s(x",y')} and Lb = max{s(y",r), s*(y,x")}.   

 Let S be the region of Re+
n+4 defined as S = {e| d ε R, a > La, b > Lb}.   

Region S has positive volume, and for all e ε S, h(e) > 0.   

 Reasoning in the case where k(x,y) < 0 is similar, completing the proof of (b).   

    QED 

 To use the theorem above to infer the existence of a cut vertex between x and y, one must know 

whether k(x,y) ≡ 0.  If k(x,y) ≡ 0, then s(x,r) ≡ s(x,y') and it follows that the interaction contrasts are 0 

for all levels of the factors.  But in practice, one would only know that a nonzero interaction was never 

found in the available data.  In practice, it is reasonable to conclude that a cut vertex between x and y 

exists if nonsignificant interactions are found in studies with high power, using several levels of the 
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factors selectively influencing processes x and y, and under a variety of circumstances likely to affect 

the durations of processes other than x and y.      

 

Superarcs 

 Every arc in a stage is sequential with all the arcs outside that stage, so the arcs in a stage 

behave as a unit with respect to arcs outside the stage.  A superarc (or superprocess) is a useful 

generalization of this notion.  Suppose M is a subnetwork of the directed acyclic network N.  A vertex 

is incident with an arc if the vertex is either the starting or ending vertex of the arc.  A vertex of 

attachment of M is a vertex of M which is incident with an arc of N not in M.  A starting vertex of M is 

a vertex s of M such that no arc of M has s as its ending vertex.  An ending vertex of M is a vertex t of 

M such that no arc of M has t as its starting vertex.  A superarc in a directed acyclic network N is a 

subnetwork with exactly one starting vertex, exactly one ending vertex, which is different from the 

starting vertex, and no vertex of attachment other than the starting or the ending vertex.  In a task 

network, the arcs represent processes and we say a superarc represents a superprocesses.   

 A superarc M has the following three properties (Schweickert, 1983), which make the arcs in it 

behave as a unit with respect to the arcs outside of it.  (a) It is weakly connected; that is, given any two 

vertices u and v of M one can follow arcs of M from u to v, ignoring the directions of the arcs.  (b) The 

arcs of M are convex; that is, if x and z are arcs of M, and there is an arc y such that x precedes y and y 

precedes z, then y is an arc of M.  (c) The arcs of M are partitive; that is, an arc outside M is sequential 

with an arc inside M if and only if it is sequential with all arcs of M, and an arc outside of M is 

concurrent with an arc of M if and only if it is concurrent with all the arcs of M.  (Arcs in a partitive set 

of arcs may not all be in the same superarc.  A partitive set of elements is sometimes called a module.)  

For some purposes, because of these properties, a superarc M can be replaced by a single arc in the 

network with the only loss of information being about relations of arcs within M to each other.  A stage 
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as we define it is a superarc, but not all superarcs are stages.   

Conclusion 

 A large body of studies report that two factors had additive effects on reaction time in an 

experiment (see Sanders, 1980).  The additivity is easily explained by saying the factors selectively 

influence different processing stages in series.  But other studies, and the anatomy of the brain, suggest 

that concurrent processing must be prevalent.  A natural way to reconcile the findings is to say that 

processing can be cut at various places; processes separated by a cut behave as if in series, and 

processes not separated by a cut do not.  This notion can be made precise by assuming the processes are 

partially ordered; that is, representable in a directed acyclic network.  A cut vertex in such a network is 

a vertex that is on every path from a starting vertex to the ending vertex of the network.  If we suppose 

the network has a single starting vertex and a single ending vertex, then it is natural to define a stage as 

the set of processes between two cut vertices, or between a cut vertex and either the starting or ending 

vertex of the network.  An indication that the definition is useful is that stages defined in this way turn 

out to be analogous to stages as assumed in the Additive Factor Method.  With our definition two 

factors selectively influencing processes will have additive effects if the processes are in different 

stages, and the factors can be made to interact if the processes are in the same stage.   
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Figure Captions 

 Figure 1.  Processes x and y are sequential, each is concurrent with process z.  Starting vertex of 

this directed acyclic task network is o, ending vertex is r.    

Figure 2.  Cut vertex c divides the directed acyclic task network into two stages.   
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