8,172 research outputs found

    Bayesian Functional Data Analysis Using WinBUGS

    Get PDF
    We provide user friendly software for Bayesian analysis of functional data models using \pkg{WinBUGS}~1.4. The excellent properties of Bayesian analysis in this context are due to: (1) dimensionality reduction, which leads to low dimensional projection bases; (2) mixed model representation of functional models, which provides a modular approach to model extension; and (3) orthogonality of the principal component bases, which contributes to excellent chain convergence and mixing properties. Our paper provides one more, essential, reason for using Bayesian analysis for functional models: the existence of software.

    Non-linear optimization for parameter estimation for flood forecasting

    Get PDF
    Floods are the response of a catchment area to severe rainfall events. Each catchment will have its unique response which is dependent on its own characteristics and the temporal and spatial distribution of the oncoming rainfall event. A non linear optimization technique has been applied to historical data for rainfall and river flows of the Kakanui catchment in North Otago, New Zealand, to estimate the parameters of a model based on the transfer function concept. The non linear optimization is based on Powell algorithm. Powell algorithm has been widely used in the literature, and it is more efficient and faster than the Simplex method (Press et al., 1989) Observed rainfall events at two locations in the Kakanui catchment, along with the corresponding observed flows of the river have been utilized to estimate the transfer function which represents the response of the Kakanui catchment to rainfall events. An adjusted form of Philip’s equation for infiltration was used to estimate the abstraction of the rainfall event and obtain the effective rainfall which will contribute to the river flow. Weighing factors were assigned to each of the rainfall sites to obtain the best fit between observed and forecasted flows. Nine flood events were used for the calibration process, while two events were utilized for the validation of the derived model. The model has 19 parameters for the transfer function, 2 parameters for the hydrologic abstractions model, and 2 parameters for the weighing factors of the rainfall sites. This results in a total of 23 parameters for the developed model. The ratio of observed cumulative rainfall at Clifton Falls to the corresponding rainfall at the Dasher for historical events is not consistent, and varies significantly from one event to another. This indicates the high variability of the spatial distribution of rainfall events over the Kakanui catchment. As these rainfall events were used in the model calibration, it was difficult to obtain the correct transfer function without proper accounting for the spatial distribution of rainfall over the whole watershed. However, the model, in general, performed satisfactory, given the difficulty in representing the spatial variability of the rainfall events. The model was capable of simulating the flood hydrographs of several events which were incorporated in its calibration, but did not perform well with others. The model was able to simulate well the flows of a flood event which was not included in its calibration. Moreover, in applying the derived model for a real case event which occurred most recently on 30 July 2007, the model was able to forecast very closely the peak flow, but the whole flow hydrograph was not forecasted as good

    A Herschel/HIFI Legacy Survey of HF and H2O in the Galaxy: Probing Diffuse Molecular Cloud Chemistry

    Full text link
    We combine Herschel observations of a total of 12 sources to construct the most uniform survey of HF and H2O in our Galactic disk. Both molecules are detected in absorption along all sight lines. The high spectral resolution of the Heterodyne Instrument for the Far-Infrared (HIFI) allows us to compare the HF and H2O distributions in 47 diffuse cloud components sampling the disk. We find that the HF and H2O velocity distributions follow each other almost perfectly and establish that HF and H2O probe the same gas-phase volume. Our observations corroborate theoretical predictions that HF is a sensitive tracer of H2 in diffuse clouds, down to molecular fractions of only a few percent. Using HF to trace H2 in our sample, we find that the N(H2O)-to-N(HF) ratio shows a narrow distribution with a median value of 1.51. Our results further suggest that H2O might be used as a tracer of H2 -within a factor 2.5- in the diffuse interstellar medium. We show that the measured factor of ~2.5 variation around the median is driven by true local variations in the H2O abundance relative to H2 throughout the disk. The latter variability allows us to test our theoretical understanding of the chemistry of oxygen-bearing molecules in the diffuse gas. We show that both gas-phase and grain-surface chemistry are required to reproduce our H2O observations. This survey thus confirms that grain surface reactions can play a significant role in the chemistry occurring in the diffuse interstellar medium n_H < 1000 cm^-3.Comment: 53 pages; 12 figures, accepted for publication in ApJ main journa

    Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?

    Full text link
    The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J=2-1 emission obtained with the 10~m submillimeter telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J=2-1 to J=1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations result from the modulation of velocities and the beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes are likely common features in molecular clouds that are sub-Alfvenic and may explain low column density, cirrus-like features similarly aligned with the magnetic field observed throughout the interstellar medium in far-infrared surveys of dust emission.Comment: 11 pages, 4 figures. Accepted for publication in MNRA

    Bayesian Functional Data Analysis Using WinBUGS

    Get PDF
    We provide user friendly software for Bayesian analysis of functional data models using pkg{WinBUGS}~1.4. The excellent properties of Bayesian analysis in this context are due to: (1) dimensionality reduction, which leads to low dimensional projection bases; (2) mixed model representation of functional models, which provides a modular approach to model extension; and (3) orthogonality of the principal component bases, which contributes to excellent chain convergence and mixing properties. Our paper provides one more, essential, reason for using Bayesian analysis for functional models: the existence of software

    Contaminant removal from enclosed atmospheres by regenerable adsorbents

    Get PDF
    A system for removing contaminants from spacecraft atmospheres was studied, which utilizes catalyst-impregnated activated carbon followed by in-situ regeneration by low-temperature catalytic oxidation of the adsorbed contaminants. Platinum was deposited on activated carbon by liquid phase impregnation with chloroplatinic acid, followed by drying and high-temperature reduction. Results were obtained for the seven selected spacecraft contaminants by means of three experimental test systems. The results indicate that the contaminants could be removed by oxidation with very little loss in adsorptive capacity. The advantages of a catalyst-impregnated carbon for oxidative regeneration are found to be significant enough to warrent its use

    Molecular clouds and clumps in the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey

    Full text link
    The Boston University-Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS) of 13 CO (1-0) emission covers Galactic longitudes 18 deg < l < 55.7 deg and Galactic latitudes |b| <= 1 deg. Using the SEQUOIA array on the FCRAO 14m telescope, the GRS fully sampled the 13 CO Galactic emission (46 arcsec angular resolution on a 22 arcsec grid) and achieved a spectral resolution of 0.21 km/s. Because the GRS uses 13 CO, an optically thin tracer, rather than 12 CO, an optically thick tracer, the GRS allows a much better determination of column density and also a cleaner separation of velocity components along a line of sight. With this homogeneous, fully-sampled survey of 13 CO, emission, we have identified 829 molecular clouds and 6124 clumps throughout the inner Galaxy using the CLUMPFIND algorithm. Here we present details of the catalog and a preliminary analysis of the properties of the molecular clouds and their clumps. Moreover, we compare clouds inside and outside of the 5 kpc ring and find that clouds within the ring typically have warmer temperatures, higher column densities, larger areas, and more clumps compared to clouds located outside the ring. This is expected if these clouds are actively forming stars. This catalog provides a useful tool for the study of molecular clouds and their embedded young stellar objects.Comment: 29 pages. ApJ in pres

    Ionized gas at the edge of the Central Molecular Zone

    Full text link
    To determine the properties of the ionized gas at the edge of the CMZ near Sgr E we observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C II] 158 micron and [N II] 205 micron fine structure lines at six positions with the GREAT instrument on SOFIA and in [C II] using Herschel HIFI on-the-fly strip maps. We use the [N II] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C II] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. We detect two [C II] and [N II] velocity components, one along the line of sight to a CO molecular cloud at -207 km/s associated with Sgr E and the other at -174 km/s outside the edge of another CO cloud. From the [N II] emission we find that the average electron density is in the range of about 5 to 25 cm{-3} for these features. This electron density is much higher than that of the warm ionized medium in the disk. The column density of the CO-dark H2_2 layer in the -207 km/s cloud is about 1-2X10{21} cm{-2} in agreement with theoretical models. The CMZ extends further out in Galactic radius by 7 to 14 pc in ionized gas than it does in molecular gas traced by CO. The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 1e6 to 1e7 photons cm{-2} s{-1}, and/or efficient proton charge exchange with nitrogen, at temperatures of order 1e4 K, and/or a large flux of X-rays. Sgr E is a region of massive star formation which are a potential sources of the EUV radiation that can ionize the gas. In addition X-ray sources and the diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen.Comment: 12 pages, 9 figure

    A Search for 6.7 GHz Methanol Masers in M33

    Full text link
    We report the negative results from a search for 6.7 GHz methanol masers in the nearby spiral galaxy M33. We observed 14 GMCs in the central 4 kpc of the Galaxy, and found 3 sigma upper limits to the flux density of ~9 mJy in spectral channels having a velocity width of 0.069 km/s. By velocity shifting and combining the spectra from the positions observed, we obtain an effective 3sigma upper limit on the average emission of ~1mJy in a 0.25 km/s channel. These limits lie significantly below what we would expect based on our estimates of the methanol maser luminosity function in the Milky Way. The most likely explanation for the absence of detectable methanol masers appears to be the metallicity of M33, which is modestly less than that of the Milky Way
    corecore