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Abstract

We provide user friendly software for Bayesian analysis of functional data models using
WinBUGS 1.4. The excellent properties of Bayesian analysis in this context are due to:
(1) dimensionality reduction, which leads to low dimensional projection bases; (2) mixed
model representation of functional models, which provides a modular approach to model
extension; and (3) orthogonality of the principal component bases, which contributes to
excellent chain convergence and mixing properties. Our paper provides one more, essen-
tial, reason for using Bayesian analysis for functional models: the existence of software.
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1. Introduction

Functional data analysis (FDA) is an area of research concerned with the statistical analysis
of functions. It is closely related to multivariate data analysis because functions are highly
multivariate objects. The main distinction between FDA and multivariate analysis is the
intrinsic ordering of observations; for example in time for time series or space for images. FDA
is under intense methodological development (Chiou, Müller, and Wang 2003; James 2002;
James, Hastie, and Sugar 2001; Müller and Stadtmüller 2005; Ramsay and Silverman 2006;
Yao, Müller, and Wang 2005b; Yao and Lee 2006, are just a few examples of fundamental
contributions in this area). Two comprehensive monographs of FDA with applications to
curve and image analysis are Ramsay and Silverman (2005, 2006).

FDA was extended to multilevel functional data (see e.g., Baladandayuthapani, Mallick, Hong,
Lupton, Turner, and Carroll 2008; Di, Crainiceanu, Caffo, and Punjabi 2009; Guo 2002;
Morris, Vanucci, Brown, and Carroll 2003; Morris and Carroll 2006; Crainiceanu, Staicu, and
Di 2009b; Staicu, Crainiceanu, and Carroll 2009). In this paper we will use the Di et al. (2009)
approach to modeling multilevel functional data. This approach uses functional principal
component bases to reduce data dimensionality and accelerate the associated algorithms,
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which is especially useful in moderate and large data sets.

A close inspection of various types of functional models reveals that they can all be viewed
as mixed effects models (James et al. 2001; James 2002; Morris and Carroll 2006; Di et al.
2009). Inferential methods for functional models range from using frequentist BLUP methods
(Yao et al. 2005b; Yao and Lee 2006) to expectation maximization algorithms (James et al.
2001; James 2002) to Bayesian simulations (Morris et al. 2003; Morris and Carroll 2006;
Crainiceanu et al. 2009b). However, Bayesian posterior inference has not become one of the
standard inferential tools for functional data. Crainiceanu et al. (2009b) speculated that

Possible reasons for the current lack of Bayesian methodology in functional analy-
sis could be: (1) the connection between functional models and joint mixed effects
models was not known; and (2) the Bayesian inferential tools were perceived as
unnecessarily complex and hard to implement.

In this paper we will further clarify the connection between functional and mixed effects mod-
els. We will also disprove (2) by providing a simple combination of R (R Development Core
Team 2009) and WinBUGS 1.4 (Spiegelhalter, Thomas, Best, and Lunn 2003) programs that
make Bayesian simulations relatively painless. Arguing the necessity for Bayesian methods
in general exceeds the scope of our paper; we defer instead to some excellent monographs de-
scribing the methodological and computational research conducted over the last 10–20 years
(see e.g., Carlin and Louis 2008; Congdon 2003; Gelman, Carlin, Stern, and Rubin 2003; Gilks,
Richardson, and Spiegelhalter 1996, and the citations therein for a good overview). Instead,
we will argue that the excellent properties of Bayesian analysis in the context of functional
data analysis are due to: (1) dimensionality reduction, which leads to low dimensional pro-
jection bases; (2) mixed model representation of functional models, which provides a modular
approach to model extension; and (3) orthogonality of the principal component bases, which
contributes to excellent chain convergence and mixing properties.

The paper describes methods and software for a variety of functional models. Section 2 is
focused on the functional principal component analysis of functional data observed at one visit.
Section 3 is concerned with functional regression, that is regression where either the covariate
or the outcome is a function. Section 4 is focused on the multilevel functional principal
component analysis of data observed at multiple visits. Relevant features of the WinBUGS 1.4
programs are described throughout the paper, the entire WinBUGS 1.4 programs are provided
in the Appendices. R and WinBUGS 1.4 programs are in the file Bayes_FDA.zip.

2. Single-level modeling of functional data

Consider, for illustration, data from the Sleep Heart Health Study (SHHS). SHHS is a multi-
center study of sleep disrupted breathing, hypertension and cardiovascular disease (Quan,
Howard, Kiley, Nieto, and O’Connor 1997). Here, we focus on modeling a particular charac-
teristic of the spectrum of the Electroencephalograph (EEG) data, the proportion of δ-power.
For more details on the definition and interpretation of δ-power (see e.g., Crainiceanu, Caffo,
and Punjabi 2009a; Di et al. 2009; Crainiceanu et al. 2009b). In our context, it is sufficient
to know that percent δ-power is a summary measure of the spectral representation of the
EEG signal; in this paper we use percent δ-power calculated in 30-second intervals. Figure 1
displays the sleep EEG proportion of δ-power in each of 30-second interval for 3 subjects at
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Figure 1: Percent δ-power since sleep onset (time = 0). Data shown are for the first 4 hours
of sleep of 3 subjects (dotted lines) at the baseline visit. The average over 3, 040 subjects is
the black solid line.

the baseline visit. The x axis represents time in hours since sleep onset and the y axis rep-
resents the estimated proportion of δ-power. Observations are shown in adjacent 30-second
intervals with missing observations indicating wake periods. For interpretation, δ-power cor-
responds to low-frequency neuronal firing and a higher value of an observation corresponds
to lower frequency average neuron firing in a particular interval. Data are shown from sleep
onset, when neuronal firing tends to contain higher frequencies, which corresponds to lower
percent δ-power. As subjects go through deeper stages of sleep, neuronal firing slows down
and contains more lower frequencies, which corresponds to higher values of percent δ-power.
Please note the increase in average percent δ-power in the first 30-35 minutes of sleep. As
time from sleep onset passes, the subject-specific percent δ-power functions become more and
more de-synchronized; this results in a flattening of the population average, even though the
variability of the subject-specific curves around the population curve does not change. The
SHHS contains more than 3, 000 subjects with baseline and visit 2 sleep EEG data.

In this section, we describe Bayesian methods for the analysis of a sample of curves observed
at one visit. The basic idea is to decompose each subject specific curve into a population
average, a subject-specific deviation from the population average and measurement error. The
subject-specific deviations are modeled by projecting them on a small number of eigenvectors
of the covariance matrix of the sample of curves. Using the mixed model formulation of
the underlying model we obtain the joint posterior distribution of all parameters given the



4 Bayesian Functional Data Analysis Using WinBUGS

data. The parameter space includes all subject-specific functions and their individual scores.
Methods in this section can be applied to sparse or dense functional data.

2.1. Functional principal component analysis

We focus on the first hour of sleep EEG data for 500 subjects. Denote the observed EEG
fraction of δ-power by Wi(t), for subject i = 1, . . . , I = 500, at the 30-second interval t =
1, . . . , T = 120. In this data set 14% of observations are missing because wake periods are
removed. Wake periods are contiguous, have random lengths and appear at random times.
Let Xi(t) be the true EEG fraction of δ-power and assume that Wi(t) is the functional proxy
for Xi(t) and that they are related via the following functional measurement error model

Wi(t) = µ(t) +Xi(t) + εi(t) (1)

where εi(t) is a white noise process and Xi(t) is a realization of a mean-zero stochastic process
with covariance operator KX(t, s) = cov{Xi(t), Xi(s)}. Using methods method of moments
(MoM) and smoothing Di et al. (2009), we obtain a smooth estimator K̂X(t, s) and its cor-
responding eigenfunctions, ψk(·), k = 1, . . . , T . Table 1 provides the first 10 eigenvalues and
associated levels of variance explained for K̂X(t, s) indicating that more than 95% of the
observed functional variability is associated with the first 6 eigenfunctions. Figure 2 displays
the first two eigenfunctions (left panels) and the deformations from the population mean in
the positive and negative directions of the eigenfunctions.

Staicu et al. (2009) and Crainiceanu et al. (2009b) point out that choosing the number of
eigenfunctions corresponds to step-wise testing for zero variance components. They propose
using a Restricted Likelihood Ratio Test (RLRT) for this zero variance. The null distribution
can be easily approximated using methods introduced by Greven, Crainiceanu, Küchenhoff,
and Peters (2008) based on the null distribution derived in Crainiceanu and Ruppert (2004)
and Crainiceanu, Ruppert, Claeskens, and Wand (2005).

We will retain the first K = 10 eigenfunctions and consider the case when µ(t) = 0. This can
be achieved by replacing Wi(t) by Wi(t)− µ̂(t), where µ̂(t) =

∑I
i=1Wi(t)/I. The functional

model (1) becomes {
Wi(t) =

∑K
k=1 ξikψk(t) + εi(t);

ξik ∼ N(0, λk); εi(t) ∼ N(0, σ2
ε ),

(2)

which is a mixed effects model. We now show how to implement this model in WinBUGS.

To completely specify the Bayesian model, one needs to provide prior distributions for all
model parameters. We used independent Gamma(10−3, 10−3) priors for σ2

ε , σ
2
k for k =

Eigenvalues
1 2 3 4 5 6 7 8 9 10

Var 0.99 0.31 0.18 0.10 0.06 0.04 0.03 0.02 0.02 0.01
% Var 56.4 17.8 10.3 5.4 3.3 2.2 1.4 1.2 1.0 0.6
Sum % Var 56.4 74.2 84.5 90.0 93.3 95.5 96.9 98.1 99.1 99.8

Table 1: Estimated eigenvalues for the percent δ power using data for the first hour of sleep
during the baseline visit of 500 subjects from the SHHS.
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Figure 2: Left panels: First and second eigenvectors, ψ1(t) and ψ2(t), for the first hour of
sleep percent δ power data on 500 subjects. Right panels: The positive (“+” sign) and neg-
ative (“−” sign) deformation from the population mean in the direction of the corresponding
eigenfunction.

1, . . . ,K = 10. The parameterization of the Gamma(a, b) distribution is chosen so that
its mean is a/b = 1 and its variance is a/b2 = 103. These choices are reasonable as the MoM
estimators of σ2

ε and λK=10 were 6.7 · 10−3 and 1.16 · 10−2, respectively (see e.g., Crainiceanu,
Ruppert, Carroll, Adarsh, and Goodner 2007, for a thorough discussion on Gamma priors).
In Bayesian models, the estimates of the variance components are known to be sensitive to
the prior specification; see Gelman (2006). Alternative to gamma priors are discussed by, for
example, Gelman (2006) and Natarajan and Kass (2000). These have the advantage of re-
quiring less care in the choice of the hyperparameters. However, we find that with reasonable
care, the conjugate gamma priors can be used in practice. Nonetheless, exploration of other
prior families for functional data analysis would be well worthwhile, though beyond the scope
of this paper.

2.2. WinBUGS program for the single-level exposure model

We now describe the WinBUGS program that follows closely the description of the Bayesian
functional principal component analysis (FPCA) model (2). We provide the entire program
in the Appendix A. While the program was designed for the SHHS data, it can be used for
other FPCA with only minor adjustments. Many features of this program will be repeated
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in the other examples in this paper and changes will be described, as needed.
Model (2) describes the core components (likelihood and shrinkage assumptions) of FPCA
and is specified in WinBUGS as follows

for (i in 1:N_subj)
{for (t in 1:N_obs)

{W[i,t]~dnorm(X[i,t],tau_eps)
X[i,t]<-xi[i,1]*psi[t,1]+xi[i,2]*psi[t,2]+xi[i,3]*psi[t,3]+

xi[i,4]*psi[t,4]+xi[i,5]*psi[t,5]+xi[i,6]*psi[t,6]+
xi[i,7]*psi[t,7]+xi[i,8]*psi[t,8]+xi[i,9]*psi[t,9]+
xi[i,10]*psi[t,10]}

for (k in 1:dim.space)
{xi[i,k]~dnorm(0,tau_lambda[k])}

}

This part of the program describes a double loop over the subjects, for (i in 1:N_subj),
and over the number of observations within subjects, for (t in 1:N_obs). The number of
subjects, N_subj, is a constant in the program and is equal to 500. The number of observations
within subject, N_obs, is also a constant and is equal to 120, which corresponds to the number
of 30-second intervals in one hour. Note that, in general, the number of observations for each
subject is smaller than 120 due to missing observations. However, missing observations are
treated as random and are estimated like all the other unknowns in the model.
The first statement specifies that the Wi(t), the observed percent EEG δ-power, has a nor-
mal distribution with mean Xi(t), the true percent EEG δ-power, and precision τε = σ−2

ε .
The second statement provides the structure of the conditional mean function, Xi(t). Here
psi[t,k] denotes the kth eigenfunction evaluated at time t, ψk(t). All eigenfunctions are
obtained from the diagonalization procedure of the smooth estimator K̂X(t, s) of KX(t, s)
and are treated as data. Also, xi[i,k] corresponds to ξik in model (2), which is the score
of the subject i-specific function on the kth eigenfunction, ψk(t). Thus, xi[,] is a I × K
dimensional matrix of random parameters, whose joint posterior distribution is the main tar-
get of inference. The third statement specifies that ξik for i = 1, . . . , I, the scores of subjects
on principal component k, have a normal distribution with mean 0 and component k-specific
precision τk,λ = λ−1

k . The matrices W[,] and psi[,] are I × T and T × K dimensional,
respectively, are obtained outside WinBUGS and are entered as data. The software accom-
panying this paper contains an auxiliary R program that calculates these matrices and uses
the R2WinBUGS package (Sturtz, Ligges, and Gelman 2005) to call WinBUGS from R. The
formulae for X[i,t] could be shortened using the inner product function inprod. However,
depending on the application, computation time can be 5 times longer when inprod is used.
The model continues with the prior specifications for the precision parameters, τk = σ−2

k .
These parameters were already estimated as the eigenvalues of the method of moments esti-
mator K̂X(t, s) and could be embedded as constants. Here, we estimate them again by using
uninformative gamma priors.

for (k in 1:dim.space)
{tau_lambda[k]~dgamma(1.0E-3,1.0E-3)
lambda[k]<-1/ll[k]}
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Figure 3: 1, 000 un-thinned draws from the posterior distributions for two variance com-
ponents, λ1 and λ3, and two subject-specific deviations, X3(·) and X5(·), evaluated at two
different time points, t = 10 and t = 50, respectively.
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Figure 4: Estimated subject-specific means with 95% point-wise credible intervals for the
EEG normalized δ power in the first hour of sleep of 4 subjects from the SHHS.
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2.3. Results

We obtained 1, 500 simulations, discarded the first 500 as burn-in and used the remainder
1, 000 for inference. For I = 500 subjects and T = 120 grid points for each function the total
computation time was 4.8 minutes (Dual Core Processor 3GHz, 8Mb RAM PC). This number
of simulations was enough for our purposes because convergence and mixing of the chains was
excellent. Indeed, Figure 3 displays the un-thinned histories for 4 chains corresponding to
two variance components and two subject-specific deviations from the population mean. The
independence-like behavior of the chains is due to the orthogonality of the functional basis,
ψk(·).
Chain properties, such as convergence and mixing are crucial in Bayesian analysis based on
posterior simulations. Indeed, if the chain does not converge or converges very slowly to the
target distribution then inferences based on these chains may be unreliable. Poor mixing may
be due to a variety of factors, all of them undesirable: inadequate model parameterization,
unidentifiable or nearly unidentifiable models, poor performance of simulation algorithms,
wrong implementation, etc. Poor mixing is one of the most haunting problems of modern
Bayesian computational problems, with hundreds of papers dedicated to improving mixing
behavior. In practice, we found that convergence of chains is best illustrated by running
multiple chains from over-dispersed initial values with respect to the target distribution and
visually inspect when chains have converged. A more formal approach would be to monitor the
Gelman and Rubin statistic Gelman and Rubin (1992). In our case convergence is basically
instantaneous and simply removing the first 500 simulations as burn-in is more than enough.
Mixing is typically assessed by visual inspection, by calculating the autocorrelation function
or the Monte Carlo error. Visual inspection of chains indicated that our chains are very close
to independence sampling.

The orthogonality of the principal component basis, the data reduction and the mixed model
representation of functional models make Bayesian analysis particularly appealing for func-
tional data analysis.

Bayesian posterior simulations provide the joint posterior distribution of all parameters given
the data. Note that the subject-specific functional random effects, Xi(t) =

∑K
k=1 ξikψk(t),

are explicit functions of the model parameters, ξik; thus, one can obtain the joint posterior
distribution of all Xi(t), for every t. Figure 4 displays the data (black dots) for 4 subjects
together with the posterior means (solid black line) and 95% point-wise credible intervals
(shaded areas) of the subject-specific mean, µ(t) +Xi(t). Constructing credible or confidence
intervals is considered to be technically difficult but important; using the Bayesian methods
in this paper this can be done relatively easily for data sets with a large number of subjects.
We are not aware of any other published result that allows this.

3. Functional regression models

In this section, we describe Bayesian analysis of three types of functional regression. First,
we introduce the classical functional regression model where an outcome is regressed on a
functional predictor. This is done by adding a regression model to the functional models
introduced in Section 2, where the outcome is regressed on the functional scores and other
covariates. The regression and the functional model are fitted jointly, which correctly accounts
for the uncertainty of functional estimators. Second, we introduce the Bayesian penalized B-



Journal of Statistical Software 9

splines model to estimate the functional coefficient. This is an alternative to the classical
functional regression model that uses a large number of principal components to estimate
the subject-specific functions and a spline penalty to control the amount of smoothing of the
functional parameter. This method avoids the typical discussions about choosing the right
number of principal components. Third, we introduce the case when functional scores are
regressed on other covariates. This is done by adding a regression model to the functional
models introduced in Section 2, where the outcome is one of the functional scores and the
regressors are other covariates. Models are fitted jointly to correctly incorporate the variability
of the unknowns.

3.1. Classical functional regression model

A particularly useful class of models that describe associations between non-gaussian outcomes
and functional data is the class of generalized functional linear models (GFLM, Müller and
Stadtmüller 2005; Cardot, Ferraty, and Sarda 1999, 2003; Reiss and Ogden 2007; Ramsay
and Silverman 2006, 2005). For the ith subject the data are [Yi,Zi, {Wi(tim), tim ∈ [0, 1]}],
where Yi is the continuous or discrete outcome, Zi is a vector of covariates, and Wi(tim) is a
random curve in L2[0, 1] observed at time tim, which is the mth observation, j = 1, . . . ,Mi,
for the ith subject, i = 1, . . . , n. We assume that Wi(t) is a proxy observation of the true
underlying functional signal Xi(t) and that Wi(t) = µ(t) + Xi(t) + εi(t), where µ(t) is the
population average and εi(t) is a mean zero white noise process with variance σ2

ε . We also
assume that the distribution of Yi is in the exponential family with linear predictor ϑi and
dispersion parameter a, denoted here by EF(ϑi, a). The linear predictor is assumed to have
the following form

ϑi =
∫ 1

0
Xi(t)β(t)dt+Zt

iγ, (3)

where β(·) ∈ L2[0, 1] is a functional parameter and the main target of inference. Note that if
{ψk(·), k ≥ 1} is an orthonormal basis in L2[0, 1] then both Xi(·) and β(·) have unique repre-
sentations Xi(t) =

∑
k≥1 ξikψk(t), β(t) =

∑
k≥1 βkψk(t) and equation (3) can be rewritten as

ϑi =
∑

k≥1 ξikβk +Zt
iγ. Thus, conditional on the eigenfunctions ψk(t), k = 1, . . . ,K, and on

the number of eigenfunctions, K, the standard functional regression model can be re-written
as the following mixed effects model

Yi ∼ EF(ϑi, a);
ϑi =

∑
k≥1 ξikβk +Zt

iγ;
Wi(t) =

∑K
k=1 ξikψk(t) + εi(t);

ξik ∼ N(0, λk); εi(t) ∼ N(0, σ2
ε ).

(4)

The first line of model (4) describes the distribution of the outcome, where EF(ϑi, a) is
an exponential family distribution with linear predictor ϑi and dispersion parameter a. The
second line describes the structure of the linear predictor which contains the functional scores,
ξik, and other covariates, Zi, as regressors. The scores ξik are not directly observable, but
can be estimated from the functional exposure model described in the third line and the
distributional assumptions in the fourth line. The difference between model (4) and a standard
generalized linear mixed model (GLMM) is that in a GLMM the random effects are random
parameters for known regressors. In model (4) the random effects are the regressors in the
linear predictor ϑi.
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µ β1 β2 β3

Mean −0.25 0.14 −0.16 0.30
St. Dev. 0.09 0.09 0.16 0.21

Table 2: Estimated functional effects for sleep EEG normalized δ-power on Hypertension.
Results shown for 500 subjects and first hour of sleep.

Changes to the program

We provide the entire program in the Appendix B. For illustration, consider the case where
a binary outcome is regressed on the functional scores on the first three eigenfunctions. That
is, the functional predictor has the form

ϑi = µ+ ξi1β1 + ξi2β2 + ξi3β3. (5)

This additional regression level is included in the WinBUGS program by simply adding the
following code describing the logistic model for the outcome to the WinBUGS code described
in Section 2.2

for (i in 1:N_subj)
{Y[i]~dbern(pY[i])
logit(pY[i])<-mu+beta[1]*xi[i,1]+beta[2]*xi[i,2]+beta[3]*xi[i,3]}

One also needs to specify the prior distributions for µ, β1, β2, β3. This is done as

for (j in 1:3){beta[j]~dnorm(0,1.0E-2)}
mu~dnorm(0,1.0E-2)

Extending this regression model to include more scores or other covariates is straightforward
by simply adding terms to logit(pY[i]).

Results

We applied the functional regression model for regressing hypertension status, a binary vari-
able, on the scores of the first three principal components. We used model the functional
model (4) with the particular form of the linear predictor given in (5). We used the first hour
of normalized EEG δ-power for 500 subjects as functional predictors. Table 2 provides the
posterior mean and standard deviation of the parameters µ, β1, β2 and β3.

3.2. Functional regression using penalized B-splines

An important approach to GFLMs uses a penalized spline expansion for the coefficient func-
tion (O’Sullivan 1986; Cardot et al. 2003; Cardot and Sarda 2005; Ruppert, Carroll, and
Wand 2003; Wood 2006). As in Section 3.1, assume that for the ith subject we observe
[Yi, Zi, {Wi(tim), tim ∈ [0, 1]}] where Wi(t) is a measured-with-error proxy for the true subject-
specific function Xi(t), that Yi ∼ EF(ϑi, a), and that the linear predictor ϑi has the form given
in (3). Rather than expressing β(·) in terms of the eigenfunctions ψk(t), we use a cubic B-
spline basis {φl(t) : 1 ≤ l ≤ L} with equally spaced knots, so that β(t) =

∑L
l=1 βlφl(t); other
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Figure 5: Cubic B-spline basis with 10 functions and 6 equally spaced knots, with knots
marked by solid squares.

spline bases could be used, but the parameters of the B-spline have good mixing properties in
a Bayesian posterior simulation context. Given the truncation lag K and the identifiability
constraint L ≤ K, the linear predictor has the form

ϑi =
∫ 1

0
{
K∑
k=1

ξikψk(t)}{
L∑
l=1

βlφl(t)}dt+ Ziγ

= ξiJβ
> +Ziγ,

where ξi = [ξi1, ..., ξiK ]>, β = [β1, ..., βL]> and J is a K × L dimensional matrix with the
(k, l)th entry equal to

∫ 1
0 ψk(t)φl(t)dt. These integrals are computed by numeric integration

and are fixed for the purpose of this paper. WinBUGS loads the matrix J as data.

In this paper we use B-splines, which are a flexible basis commonly used in smoothing ap-
plications; Figure 5 shows a cubic B-spline basis with 10 functions and 6 equally spaced
knots. Smoothness on β(t) is typically induced by assuming a random walk prior on the βl,
l = 1, . . . , L parameters (Brezger, Kneib, and Lang 2005; Lang and Brezger 2004). We use a
first order random prior

βl+1 ∼ N(βl, σ2
β), l = 1, . . . , L− 1,

where β1 is treated as a fixed unknown parameter. A second order random walk prior is

βl+2 ∼ N(2βl+1 − βl, σ2
β), l = 1, . . . , L− 2,

where β1 and β2 are treated as a fixed unknown parameter. Both priors are easy to implement
in WinBUGS and we choose to use the first order random walk prior.

Thus, the functional regression model using penalized B-splines has the mixed model repre-
sentation 

Yi ∼ EF (ϑi, a);
ϑi = ξiJβ

> +Ziγ;
Wi(t) =

∑K
k=1 ξikψk(t) + εi(t);

ξik ∼ N(0, λk); εi(t) ∼ N(0, σ2
ε );

βl+1 ∼ N(βl, σ2
β), l = 1, . . . , L− 1.

(6)
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Changes to the program

We provide the entire program in the Appendix C. We describe the changes in the WinBUGS
program to account for the different parameterization of ϑi. Here, we choose K = L = 10;
straightforward changes to the code below allow for larger values of both. First, we use the
following code to define the functional predictor for each subject:

logit(pY[i])<-mu[i]
mu[i]<-mp+eta[i]
eta[i]<-xi[i,1]*gamma[1]+xi[i,2]*gamma[2]+xi[i,3]*gamma[3]+

xi[i,4]*gamma[4]+xi[i,5]*gamma[5]+xi[i,6]*gamma[6]+
xi[i,7]*gamma[7]+xi[i,8]*gamma[8]+xi[i,9]*gamma[9]+
xi[i,10]*gamma[10]

Here, gamma is the L × 1 vector Jβ>. This vector is updated once per iteration, and is
computed outside the loop over subjects in the following code:

for(l in 1:L){
gamma[l]<-J[l,1]*beta[1]+J[l,2]*beta[2]+J[l,3]*beta[3]+

J[l,4]*beta[4]+J[l,5]*beta[5]+J[l,6]*beta[6]+
J[l,7]*beta[7]+J[l,8]*beta[8]+J[l,9]*beta[9]+
J[l,10]*beta[10]

}

The first order random walk prior is specified as

for (l in 2:L)
{beta[l]~dnorm(beta[l-1],taubeta)}
beta[1]~dnorm(0,1.0E-6)
taubeta~dgamma(1.0E-3,1.0E-3)

Results

Figure 6 shows the estimate of the functional coefficient β(t) in the linear predictor (3) us-
ing the penalized B-spline approach (blue solid line); for reference, we also plot the estimate
from the classical functional regression model presented in Section 3.1 (red solid line). In
the Bayesian context obtaining credible intervals for the functional parameter is straightfor-
ward by simply monitoring β. Figure 6 displays the pointwise 95% credible interval for the
estimated coefficient function, indicating that in this example there is not much evidence of
statistical significance. Also, the classical and the penalized spline regression provide similar
results, but this need not be the case in general (Goldsmith, Feder, and Crainiceanu 2010).

3.3. Regression with functional scores as outcomes

In this section, we focus on models that regress functional scores on other covariates. This type
of models are important to identify and quantify predictors of observed principal directions
of functional variability. For simplicity, we focus on predictors of subject-specific scores, ξi,k0 ,
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Figure 6: The left panel shows two estimates of the functional coefficient β(t), one from
the classical functional regression model (red solid line) and the other from the Penalized
B-Spline approach (blue solid line). The right panel also shows the estimated functions and
the pointwise 95% credible interval for β(t) using the Penalized B-spline approach.

on the k0th eigenfunction, φk0(t). We regress ξik0 on the covariate vector Zi, which could
include the scores on other eigenfunctions. The full model is

ξik0 ∼ N(Zt
iγ, λk0);

Wi(t) =
∑K

k=1 ξikψk(t) + εi(t);
ξik ∼ N(0, λk) k 6= k0;
εi(t) ∼ N(0, σ2

ε ).

(7)

The main difference between this model and model (2) is that the scores ξik0 are shrunk
towards Zt

iγ instead of 0.

Changes to the program

We provide the entire program in the Appendix D. For illustration, consider the case where
a the functional scores on the first eigenfunction is regressed on age and body mass index
(BMI). That is,

Zt
iγ = µ+ ageiγ1 + BMIiγ2.

This additional level is included in the WinBUGS program by simply adding the following code
describing the logistic model for the outcome to the WinBUGS code described in Section 2.2

for (i in 1:N_subj)
{xi[i,1]~dnorm(m_xi[i],ll[1])
m_xi[i]<-mu+gamma[1]*age[i]+gamma[2]*BMI[i]}

In this case there were 1 missing age and 41 missing BMI values. We added an imputation
model for age and BMI by adding the following code
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γ1 (age) γ2 (BMI)
Mean 0.016 0.021
St. Dev. 0.005 0.007

Table 3: Estimated effects of age and BMI on the first principal component scores. Results
shown for 500 subjects and first hour of sleep.

for (i in 1:N_subj)
{age[i]~dnorm(mu_X[1],tau[1])
BMI[i]~dnorm(mu_X[2],tau[2])}

This is the WinBUGS representation of the simple Gaussian imputation priors agei ∼ N(µX,1, τ1)
and BMIi ∼ N(µX,2, τ2). More complex imputation priors could be set up, but this exceeds
the scope of this paper.

One also needs to specify the prior distributions for µ, γ1, γ2, µX,1, µX,2, τ1, τ2. This is done as

mu~dnorm(0,1.0E-2)
for (l in 1:2)

{gamma[l]~dnorm(0,1.0E-2)
mu_X[l]~dnorm(m_prior[l],1.0E-3)
tau[l]~dgamma(1.0E-3,1.0E-3)}

Here m_prior[l] is a 2-dimensional vector containing the sample means of the observed age
and BMI values, respectively.

Results

We used the first hour of normalized EEG δ-power for 500 subjects as functional predictors
and we regressed the first principal component scores on age and BMI. Table 3 provides
the posterior mean and standard deviation of the parameters γ1 and γ2. Results indicate
that higher age and BMI are positively associated with higher scores on the first principal
component. A closer look at Figure 2 shows that the first principal component is negative and
is, roughly, a vertical shift. We conclude that higher age and BMI are significantly associated
with lower EEG percent δ-power in the first hour of sleep.

4. Multilevel modeling of functional data

The number of data sets where functional data is observed at multiple visits or within clusters
is increasing. For example, the SHHS contains EEG data at two visits for thousands of
subjects.

In this section, we describe Bayesian methods for the analysis of a sample of curves ob-
served at multiple visits. The basic idea is to decompose each curve into a population aver-
age, a visit-specific deviation from the population average, a subject-specific deviation from
the visit-specific mean, a subject/visit specific deviation from the subject-specific mean and
measurement error. The subject-specific and the subject/visit specific deviations are mod-
eled by projecting them on the eigenvectors of the covariance matrices of the subject- and
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subject/visit-specific processes, respectively. Using the mixed model formulation of the un-
derlying model we obtain the joint posterior distribution of all parameters given the data. The
parameter space includes all subject-specific and subject/visit-specific functions and their in-
dividual scores. Methods in this section can be applied to sparse or dense multilevel functional
data.

4.1. Multilevel functional principal component analysis

For illustration consider the sleep EEG percent δ-power for the first hour of sleep of 500
subjects who have two visits, roughly 5 years apart. Denote the observed sleep EEG fraction
of δ-power by Wij(t), for subject i = 1, . . . , I = 500 at visit j = 1, J = 2, at the 30-second
interval t = 1, . . . , T = 120. In this data set 18% of observations are missing because wake
periods are removed.

We assume that Wij(t) is a proxy observation of the true underlying subject-specific functional
signal Xi(t), and that

Wij(t) = µ(t) + ηj(t) +Xi(t) + Uij(t) + εij(t).

Here µ(t) is the overall mean function, ηj(t) is the visit j specific shift from the overall mean
function, Xi(t) is the subject i specific deviation from the visit specific mean function, and
Uij(t) is the residual subject/visit specific deviation from the subject specific mean. To ensure
identifiability we assume that Xi(t), Uij(t), and εij(t) are uncorrelated, that

∑
j ηj(t) = 0 and

that εij(t) is a white noise process with variance σ2
ε . Given the large sample size of the SHHS

data, we can assume that µ(t) and ηj(t) are estimated with negligible error by W ··(t) and
W ·j(t)−W ··, respectively. Here W ··(t) is the average over all subjects, i, and visits, j, of Wij(t)
and W ·j(t) is the average over all subjects, i, of observation at visit j of Wij(t). We can assume
that these estimates have been subtracted from Wij(t), so that Wij(t) = Xi(t)+Uij(t)+εij(t).

Eigenvalues and eigenvectors in MFPCA

We use MFPCA (Di et al. 2009) to obtain the parsimonious bases that capture most of
the functional variability of the space spanned by Xi(t) and Uij(t), respectively. MFPCA is
based on the spectral decomposition of the within- and between-visit functional variability
covariance operators. We summarize here the main components of this methodology. Denote
by KW

T (s, t) = cov{Wij(s),Wij(t) } and KW
B (s, t) = cov{Wij(s),Wik(t) } for j 6= k the total

and between covariance operator corresponding to the observed process, Wij(·), respectively.
Denote by KX(t, s) = cov{Xi(t), Xi(s)} the covariance operator of the Xi(·) process and
by KU (t, s) = cov{Uij(s), Uij(t) } the total covariance operator of the Uij(·) process. By
definition, KU

B (s, t) = cov{Uij(s), Uik(t) } = 0 for j 6= k. Moreover, KW
B (s, t) = KX(s, t) and

KW
T (s, t) = KX(s, t) + KU (s, t) + σ2

ε δts, where δts is equal to 1 when t = s and 0 otherwise.
Thus, KX(s, t) can be estimated using a method of moments estimator of KW

B (s, t), say
K̂W
B (s, t). For t 6= s a method of moment estimator of KW

T (s, t)−KW
B (s, t), say K̂U (s, t), can

be used to estimate KU (s, t). To estimate K̂U (t, t) one predicts KU (t, t) using a bivariate
thin-plate spline smoother of K̂U (s, t) for s 6= t. This method was proposed for single-level
FPCA (Yao and Lee 2006) and shown to work well in the MFPCA context (Di et al. 2009).

Once consistent estimators of KX(s, t) and KU (s, t) are available, the spectral decomposi-
tion and functional regression proceed as in the single-level case. More precisely, Mercer’s
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theorem (see Indritz 1963, Chapter 4) provides the following convenient spectral decompo-
sitions KX(t, s) =

∑∞
k=1 λ

(1)
k ψ

(1)
k (t)ψ(1)

k (s), where λ(1)
1 ≥ λ

(1)
2 ≥ . . . are the ordered eigen-

values and ψ
(1)
k (·) are the associated orthonormal eigenfunctions of KX(·, ·) in the L2 norm.

Similarly, KU (t, s) =
∑∞

l=1 λ
(2)
l ψ

(2)
l (t)ψ(2)

l (s), where λ(2)
1 ≥ λ

(2)
2 ≥ . . . are the ordered eigen-

values and ψ
(2)
l (·) are the associated orthonormal eigenfunctions of KU (·, ·) in the L2 norm.

The Karhunen-Loève (KL) decomposition (Karhunen 1947; Loève 1945) provides the fol-
lowing infinite decompositions Xi(t) =

∑∞
k=1 ξikψ

(1)
k (t) and Uij(t) =

∑∞
l=1 ζijlψ

(2)
l (t) where

ξik =
∫ 1
0 Xi(t)ψ

(1)
k (t)dt, ζijl =

∫ 1
0 Uij(t)ψ

(2)
l (t)dt are the principal component scores with

E(ξik) = E(ζijl) = 0, Var(ξik) = λ
(1)
k , Var(ζijl) = λ

(2)
l . The zero-correlation assumption

between the Xi(·) and Uij(·) processes is ensured by the assumption that cov(ξi, ζijl) = 0.
These properties hold for every i, j, k, and l. For simplicity we will refer to ψ(1)

k (·), ψ(2)
l (·)

and λ
(1)
k , λ(2)

l as the level 1 and 2 eigenfunctions and eigenvalues, respectively.

For the SHHS example the estimated eigenvalues of K̂X(·, ·) and K̂U (·, ·) are provided in Ta-
ble 4. The Level 1 and 2 labels to refer to the X and U processes, respectively. Approximately
99% of the subject-specific process variability is explained by the first 3 principal components
whereas as many as 12 components are necessary to explain the same percentage of variability
for the subject-visit-specific variability. The within-subject between-visit correlation can be
estimated as

ρ̂W =

∑
k≥1 λ̂

(1)
k∑

k≥1 λ̂
(1)
k +

∑
l≥1 λ̂

(2)
l

.

In the SHHS example considered in this paper ρ̂W = 0.33.

Figure 7 displays the first two eigenvectors for the Level 1 (top panels) and 2 (bottom panels)
processes. The first eigenvalues at both levels capture mainly vertical shifts. The second
eigenvalue at the first level is roughly centered around zero. Subjects who are positively
loaded on this component will tend to have: (1) a lower sleep EEG δ-power proportion than
the population average in the first 10 and last 10 minutes of the first hour of sleep; and (2) a
higher sleep EEG δ-power proportion than the population average between minutes 20 and 40.
This eigenfunction is not smooth, most likely because of the sample size and small proportion
of variation explained. One could easily smooth it using any reasonable scatterplot smoother.

Eigenvalues – level 1
1 2 3 4 5 6 7 8 9 10

Var 0.49 0.04 0.02
% Var 88.6 6.8 3.9
Sum % Var 88.6 95.4 99.3

Eigenvalues – level 2
Var 0.42 0.27 0.14 0.09 0.06 0.04 0.02 0.02 0.02 0.01
% Var 37.7 24.1 12.3 7.9 5.1 3.3 2.0 1.7 1.4 1.3
sum % Var 37.7 61.9 74.2 82.2 87.2 90.6 92.6 94.3 95.7 97.0

Table 4: Estimated eigenvalues for the percent δ power using data for the first hour of sleep
during the baseline visit of 500 subjects from the SHHS.
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Figure 7: Top panels: First and second eigenvectors at level 1, ψ(1)
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panels: First and second eigenvectors at level 1, ψ(2)
1 (t) and ψ

(2)
2 (t).

Here, we work directly with the eigenvalue shown in Figure 7. The second eigenvalue at the
second level is also roughly centered around zero. Subject-visits that are positively loaded
on this component will tend to have: (1) a higher sleep EEG δ-power proportion than the
subject-specific average in the first 25 minutes of the first hour of sleep; and (2) a lower sleep
EEG δ-power proportion than the subject-specific average between in the last 10 minutes of
the first hour of sleep.

Estimating the scores in the MFPCA

Conditional on the eigenfunctions and truncation lags K and L, the model for observed
functional data can be written as a linear mixed model. Indeed, by assuming a normal
shrinkage distribution for scores and errors, the model can be rewritten as{

Wij(t) =
∑K

k=1 ξikψ
(1)
k (t) +

∑L
l=1 ζijlψ

(2)
l (t) + εij(t);

ξik ∼ N{0, λ(1)
k }; ζijl ∼ N{0, λ(2)

l }; εij(t) ∼ N(0, σ2
ε ).

(8)

This model, like the other models in this paper, are especially well suited for Bayesian infer-
ence; the implementation in WinBUGS is simple, as we show in the following section. The
properties of the mixing chains remain outstanding for the same reasons: orthogonality of
the principal component bases, data reduction and mixed model representation of functional
models.
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4.2. WinBUGS program for the multilevel exposure model

We provide the entire program in the Appendix E. The WinBUGS program for the multilevel
functional model has a similar structure with the one for the single level functional model
presented in Section 2.2. Model (8) describes the core components (likelihood and shrinkage
assumptions) of MFPCA and is specified in WinBUGS as follows

for (i in 1:N_subj)
{for (t in 1:N_obs)

{W_1[i,t]~dnorm(m_1[i,t],taueps)
W_2[i,t]~dnorm(m_2[i,t],taueps)

m_1[i,t]<-X[i,t]+U_1[i,t]
m_2[i,t]<-X[i,t]+U_2[i,t]

X[i,t]<-xi[i,1]*psi_1[t,1]+xi[i,2]*psi_1[t,2]+xi[i,3]*psi_1[t,3]

U_1[i,t]<-zi[i,1,1]*psi_2[t,1]+zi[i,2,1]*psi_2[t,2]+
zi[i,3,1]*psi_2[t,3]+zi[i,4,1]*psi_2[t,4]+zi[i,5,1]*psi_2[t,5]+
zi[i,6,1]*psi_2[t,6]+zi[i,7,1]*psi_2[t,7]+zi[i,8,1]*psi_2[t,8]+
zi[i,9,1]*psi_2[t,9]+zi[i,10,1]*psi_2[t,10]

U_2[i,t]<-zi[i,1,2]*psi_2[t,1]+zi[i,2,2]*psi_2[t,2]+
zi[i,3,2]*psi_2[t,3]+zi[i,4,2]*psi_2[t,4]+zi[i,5,2]*psi_2[t,5]+
zi[i,6,2]*psi_2[t,6]+zi[i,7,2]*psi_2[t,7]+zi[i,8,2]*psi_2[t,8]+
zi[i,9,2]*psi_2[t,9]+zi[i,10,2]*psi_2[t,10]}

for (k in 1:dim.space_b)
{xi[i,k]~dnorm(0,ll_b[k])}

for (l in 1:dim.space_w)
{zi[i,l,1]~dnorm(0,ll_w[l])
zi[i,l,2]~dnorm(0,ll_w[l])}}

This part of the program describes a double loop over the subjects, for (i in 1:N_subj),
and over the number of observations within subjects, for (t in 1:N_obs). The number of
subjects, N_subj, is a constant in the program and is equal to 500. The number of observations
within subject, N_obs, is also a constant and is equal to 120, which corresponds to the number
of 30-second intervals in one hour. As in the single-level case, missing observations are treated
as random and are estimated like all the other unknowns in the model. Even though N_obs is
a constant in the program, the number of observations per subject varies. Observations that
are missing are simply included as NA in the program.

The first four statements specify that the functions Wij(t), the observed percent sleep EEG
δ-power, have a normal distribution with mean mij(t) = Xi(t) + Uij(t), the true percent
EEG δ-power, and precision τε = σ−2

ε . Here W_1[i,t] and W_2[i,t] are the WinBUGS
representation of Wi1(t) and Wi2(t), respectively. Similarly, U_1[i,t] and U_2[i,t] are
the WinBUGS representation of Ui1(t) and Ui2(t). A more compact representation of the



Journal of Statistical Software 19

U -processes could be achieved using triple-indexing. For example one could use U[1,i,t]
and U[2,i,t] instead of U_1[i,t] and U_2[i,t]; this would be especially useful for more
than two visits. However, our implementation works well and proved to be helpful during
debugging.

The fifth statement provides the structure of the subject-specific process, Xi(t), where the
kth level 1 eigenfunction evaluated at time t, ψ(1)

k (t), is psi_1[t,k]. In this case we only used
the first three eigenfunctions because together they explain more than 99% of the functional
variability at the subject-level. All eigenfunctions are obtained from the diagonalization
procedure of the smooth estimator K̂X(t, s) of KX(t, s) and are treated as data; the first two
eigenfunctions are displayed in the top panels of Figure 7. Also, xi[i,k] corresponds to ξik
in model (8), which is the score of the subject i-specific mean function, Xi(t), on the kth level
1 eigenfunction, ψ(1)

k (t). Thus, xi[,] is a I ×K dimensional matrix of random parameters,
whose joint posterior distribution is one of the targets of inference. In our example, I ×K =
500× 3 = 1, 500.

The sixth and seventh statements specify the structure of the subject-visit-specific deviations,
Ui1(t) and Ui2(t), from the subject specific mean, Xi(t). Here psi_2[t,k] denotes the kth
level 2 eigenfunction evaluated at time t, ψ(2)

k (t). In this case we used the first ten eigen-
functions because together they explain more than 97% of the functional variability at the
subject-visit level. All eigenfunctions are obtained from the diagonalization procedure of the
smooth estimator K̂W (t, s) of KW (t, s) and are treated as data; the first two eigenfunctions
are displayed in the bottom panels of Figure 7. Also, zi[i,l,j] corresponds to ζijl in model
(8), which is the score of the subject i, visit j deviation, Uij(t), from the subject-specific mean,
Xi(t), on the lth level 2 eigenfunction, ψ(2)

k (t). Thus, zi[,,] is a I×L×J dimensional matrix
of random parameters, whose joint posterior distribution is one of the targets of inference. In
our example, I × L× J = 500× 10× 2 = 10, 000.

The assumptions ξik ∼ N{0, λ(1)
k } in model (8) are specified as xi[i,k]~dnorm(0,ll_b[k]),

where ll_b[k] are the precision parameters τ (1)
k = 1/λ(1)

k and are estimated from the data.
Here the dimension of the level 1 space is K = 3, is denoted as dim.space_b and is loaded
as data in the program. The assumptions ζijl ∼ N{0, λ(2)

l } in model (8) are specified as
zi[i,l,1]~dnorm(0,ll_w[l]) and zi[i,l,1]~dnorm(0,ll_w[l]), where ll_w[k] are the
precision parameters τ (2)

k = 1/λ(2)
k and is a parameter that is estimated from the data. Here

the dimension of the level 2 space is L = 10, is denoted as dim.space_w and is loaded as data
in the program. The parameters λ(1)

k , λ(2)
k σ2

ε are jointly estimated with the other parameters
of the model. Thus, we need to specify priors for the variance parameters as

for (i in 1:dim.space_b)
{ll_b[i]~dgamma(1.0E-3,1.0E-3)
lambda_b[i]<-1/ll_b[i]}

for (i in 1:dim.space_w)
{ll_w[i]~dgamma(1.0E-3,1.0E-3)
lambda_w[i]<-1/ll_w[i]}

taueps~dgamma(1.0E-3,1.0E-3)
sigma_sq_eps=1/taueps
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Figure 8: Estimated subject-specific means with 95% pointwise credible intervals for the
EEG normalized δ-power in the first hour of sleep of the first visit for 4 subjects from the
SHHS. The model used was the multilevel model (8).

An alternative would be to use the method of moment estimators of λ(1)
k and use this estimator

as data. This is a robust approach that works well in practice, but is not used in this paper.

The matrices W_1[,] and W_2[,] are I × T , psi_1[,] is T × K, and psi_2[,] is T × L
dimensional, respectively; they are obtained outside WinBUGS and are entered as data.

4.3. Results

We obtained 1, 500 simulations, discarded the first 500 as burn-in and used the remainder
1, 000 for inference. For I = 500 subjects, J = 2 visits and T = 120 grid points for each
function the total computation time was 10.2 minutes (Dual Core Processor 3GHz, 8Mb RAM
PC). Figure 8 displays the posterior mean and 95% pointwise credible intervals for the same 4
subjects from Figure 4 at the first visit, using the multilevel model (8) instead of the single level
model (2). For the subject in the bottom left panel of Figure 4 we display the more detailed
inference permitted by the multilevel analysis. Figure 9 displays the sleep EEG percent δ-
power for this subject at visit 1 and 2 (top two panels) together with the posterior mean and
95% pointwise credible intervals. The bottom left panel in Figure 9 displays the posterior
mean and pointwise 95% credible intervals for the subject specific deviation from the visit-
specific mean, Xi(t). The posterior mean of Xi(t) is positive everywhere indicating that this
subject tends to have a higher sleep EEG percent δ-power than the average. However, none
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Figure 9: Top panels: First and second visit EEG normalized δ-power data for the subject
shown in the bottom left panel of Figure 8. Also shown are the posterior means and 95%
credible intervals using the multilevel model (8). Bottom left panel: Posterior mean and 95%
pointwise credible interval for the subject-specific deviation process, Xi(t). Bottom-right
panel: Posterior means of the subject-visit-specific deviation processes, Ui1 (black solid line)
and Ui2 (gray solid line).

of these differences is statistically significant as all credible intervals cross zero. The bottom
right panel in Figure 9 displays the posterior means of the subject-visit-specific deviations,
Ui1(t) and Ui2(t), from the subject-specific mean, µ(t) + ηj(t) + Xi(t). The black solid line
corresponds to the random functional effect at the first visit, Ui1, and the gray solid line
corresponds to the random functional effect at the first visit, Ui2. Pointwise credible intervals
are available for these processes, as well, but were omitted in the plot to avoid cluttering.

5. Interface with and processing in R

We have used R to define the data, initial values and parameters and the R2WinBUGS
package (Sturtz et al. 2005) to call and run the WinBUGS part of the program. R was also
used to do output checking and processing as well as plotting. Once the WinBUGS code is
written and debugged, the user can simply use the R interface to perform analyses or set up
simulations. The software accompanying this paper contains the commented R interface.



22 Bayesian Functional Data Analysis Using WinBUGS

6. Discussion

This paper is a compilation of examples of Bayesian functional data analysis implemented in
WinBUGS. This provides a transparent, easy to use, reproducible alternative to frequentist
software such as FDA (Ramsay, Wickham, Graves, and Hooker 2009) maintained by J. Ram-
say, PACE (Yao, Müller, and Wang 2005a) maintained by H.G. Müller, and the R package
nlmeODE (Tornoe 2007) maintained by C.W. Tornoe. There are at least three reasons for
providing WinBUGS code for the Bayesian analysis of functional data. First, for regression
models such as those introduced in Section 3, Bayesian analysis provides a natural platform
for joint modeling. This can be especially useful when functional data are sparse or func-
tional scores are predicted with sizeable error. Second, these examples could provide the
starting point for the implementation of more complex models for realistic data; our Win-
BUGS programs would require only minimal changes to include random effects, smooth uni-
or multi-variate components, and missing or miss-measured data. Third, these programs
provide an alternative platform that could be used to confirm results of frequentist software.
While, at this time, our programs are the only ones that can handle smooth penalized re-
gression (Section 3.2) and multilevel FPCA (Section 4), this will probably change with new
versions of frequentist software.
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A. Code for functional principal component analysis

See Section 2.1 for model description.

model {
for (i in 1:N_subj)
{

for (t in 1:N_obs)
{
W[i,t]~dnorm(m[i,t],taueps)
m[i,t]<-xi[i,1]*E[t,1]+xi[i,2]*E[t,2]+xi[i,3]*E[t,3]+

xi[i,4]*E[t,4]+xi[i,5]*E[t,5]+xi[i,6]*E[t,6]+
xi[i,7]*E[t,7]+xi[i,8]*E[t,8]+xi[i,9]*E[t,9]+
xi[i,10]*E[t,10]

}

for (k in 1:dim.space)
{
xi[i,k]~dnorm(0,ll[k])
}

}

for (k in 1:dim.space)
{ll[k]~dgamma(1.0E-3,1.0E-3)
lambda[k]<-1/ll[k]}

taueps~dgamma(1.0E-3,1.0E-3)
}

1. N_subj is the number of subjects, in this case equal to 500, and is loaded as data

2. N_obs is the number of observations within subjects, and is loaded as data. The program
is set up to allow for different numbers of observations per subject with missing data
being loaded as NA

3. W[i,t] is the observed realization of the subject i specific function at the time t. The
matrix W[,] is N_subj×N_obs, is loaded as data and may contain missing observations.

4. m[i,t] is the smooth mean of W[i,t] and is an unknown whose joint distribution is
simulated.

5. taueps is the precision of the error process due to imperfect observation of W[i,t]
around its smooth mean m[i,t]. This is a parameter of the model that is estimated.

6. xi[i,k] is the score of the ith subject on the kth eigenfunction, E[,k]. The matrix
xi[,] is N_subj×K dimensional and contains parameters whose posterior joint distri-
bution is simulated. Here K is equal to 10,and is hard coded into the program.
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7. E[t,k] is the kth eigenfunction evaluated at the time t. The matrix E[,] is N_obs×K
dimensional, does not contain any missing observation and is loaded as data.

8. dim.space is the dimension of the eigenspace used for projection and is loaded as data.
In this case dim.space is equal to 10

9. ll[k] are the precisions of the scores xi[i,k], are unknown parameters that are esti-
mated from the data.

10. lambda[k] are the variances of the scores xi[i,k] and are equal to 1/ll[k]

11. All precision priors are Gamma priors with mean 1 and variance 1000

B. Code for functional regression analysis

See Section 3.1 for model description.

model {
for (i in 1:N_subj)
{

Y[i]~dbern(pY[i])
logit(pY[i])<-mp+beta[1]*xi[i,1]+beta[2]*xi[i,2]+beta[3]*xi[i,3]

for (t in 1:N_obs)
{

W[i,t]~dnorm(m[i,t],taueps)
m[i,t]<-xi[i,1]*E[t,1]+xi[i,2]*E[t,2]+xi[i,3]*E[t,3]+

xi[i,4]*E[t,4]+xi[i,5]*E[t,5]+xi[i,6]*E[t,6]+
xi[i,7]*E[t,7]+xi[i,8]*E[t,8]+xi[i,9]*E[t,9]+
xi[i,10]*E[t,10]

}

for (j in 1:dim.space)
{
xi[i,j]~dnorm(0,ll[j])
}

}

for (i in 1:dim.space)
{ll[i]~dgamma(1.0E-3,1.0E-3)
lambda[i]<-1/ll[i]}

for (l in 1:3) {beta[l]~dnorm(0,1.0E-2)}
mp~dnorm(0,1.0E-2)
taueps~dgamma(1.0E-3,1.0E-3)
}
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The definition of most variables is the same as the definition for WinBUGS code for functional
principal component analysis. We describe only the new variables here.

1. Y[i] is the Bernoulli outcome for subject i. The vector Y[] has length N_subj and
is loaded as data. In the example in the paper the outcome is hypertension status
YES/NO.

2. pY[i] is the probability that subject i is hypertensive. The vector pY[] has length
N_subj and is a vector of parameters that are estimated in the model.

3. logit(pY[i]) is the logit transformation of the probabilities pY[i]. The probit trans-
formation could also be used.

4. beta[] is a vector of regression parameters of length 3 relating the logit(pY[i]) to
the scores xi[,] of subject-specific functions on eigenfunctions, E[,]. The length 3 is
not set in stone and other lengths can be accommodated when the outcome is regressed
on a different set of eigenfunctions.

5. mp is the intercept parameter of the regression of Y[] on the scores xi[,]. This is a
parameter that will be estimated in the model.

6. The priors for each beta[] parameter and mp are mutually independent normals with
mean 0 and variance 100 (recall that WinBUGS specifies the precision, 0.01, instead of
the variance, 100).

C. Code for penalized functional regression using B-splines

See Section 3.2 for model description.

model {
for (i in 1:N_subj)

{
Y[i]~dbern(pY[i])
logit(pY[i])<-mp+eta[i]
eta[i]<-xi[i,1]*gamma[1]+xi[i,2]*gamma[2]+xi[i,3]*gamma[3]+

xi[i,4]*gamma[4]+xi[i,5]*gamma[5]+xi[i,6]*gamma[6]+
xi[i,7]*gamma[7]+xi[i,8]*gamma[8]+xi[i,9]*gamma[9]+
xi[i,10]*gamma[10]

for (t in 1:N_obs)
{
W[i,t]~dnorm(m[i,t],taueps)

m[i,t]<-xi[i,1]*E[t,1]+xi[i,2]*E[t,2]+xi[i,3]*E[t,3]+
xi[i,4]*E[t,4]+xi[i,5]*E[t,5]+xi[i,6]*E[t,6]+
xi[i,7]*E[t,7]+xi[i,8]*E[t,8]+xi[i,9]*E[t,9]+
xi[i,10]*E[t,10]

}
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for (j in 1:dim.space)
{

xi[i,j]~dnorm(0,ll[j])
}

}

for(l in 1:L){
gamma[l]<-J[l,1]*beta[1]+J[l,2]*beta[2]+J[l,3]*beta[3]+

J[l,4]*beta[4]+J[l,5]*beta[5]+J[l,6]*beta[6]+
J[l,7]*beta[7]+J[l,8]*beta[8]+J[l,9]*beta[9]+
J[l,10]*beta[10]

}

for (i in 1:dim.space)
{ll[i]~dgamma(1.0E-3,1.0E-3)
lambda[i]<-1/ll[i]}

for (i in 2:L)
{beta[l]~dnorm(beta[l-1],taubeta)}
beta[1]~dnorm(0,1.0E-6)
taubeta~dgamma(1.0E-3,1.0E-3)

mp~dnorm(0,1.0E-2)
taueps~dgamma(1.0E-3,1.0E-3)
}

The definition of most variables is the same as the definition for WinBUGS code for functional
regression analysis with 10 eigenfunctions. We describe only the new variables here.

1. eta[i] is the subject-specific component of the linear predictor. The vector eta[]
has length N_subj and is the product of the parameters xi[i,] and b[], which are
estimated in the model, and the matrix Jm[,], which is fixed.

2. gamma[] is the vector containing the current product of the fixed matrix Jm[,] and the
parameter vector b[], and has length L (here L is equal to 10). It is updated outside
the loop over subjects.

3. beta[i] is the coefficient of the ith B-spline basis function used to express the functional
regressor. beta[]is the vector of regression parameters and has length L. Other values
of L are possible with straightforward changes to the code presented here.

4. J[,] is the K x L matrix containing the product of the eigenfunctions and the B-spline
basis functions (here K = L = 10). It is loaded as data.

5. taubeta is the precision parameter for beta[] and has a dgamma(1.0E-3,1.0E-3) prior
distribution.
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D. Code for regression with functional scores as outcomes

See Section 3.3 for model description.

model {
for (i in 1:N_subj)
{

xi[i,1]~dnorm(m_xi[i],ll[1])
m_xi[i]<-mu+gamma[1]*age[i]+gamma[2]*BMI[i]
age[i]~dnorm(mu_X[1],tau[1])
BMI[i]~dnorm(mu_X[2],tau[2])

for (t in 1:N_obs)
{
W[i,t]~dnorm(m[i,t],taueps)
m[i,t]<-xi[i,1]*E[t,1]+xi[i,2]*E[t,2]+xi[i,3]*E[t,3]+

xi[i,4]*E[t,4]+xi[i,5]*E[t,5]+xi[i,6]*E[t,6]+
xi[i,7]*E[t,7]+xi[i,8]*E[t,8]+xi[i,9]*E[t,9]+
xi[i,10]*E[t,10]

}

for (k in 2:dim.space)
{
xi[i,k]~dnorm(0,ll[k])
}

}

for (k in 1:dim.space)
{ll[k]~dgamma(1.0E-3,1.0E-3)
lambda[k]<-1/ll[k]}

for (l in 1:2)
{
gamma[l]~dnorm(0,1.0E-2)
mu_X[l]~dnorm(m_prior[l],1.0E-3)
tau[l]~dgamma(1.0E-3,1.0E-3)
}

mu~dnorm(0,1.0E-2)
taueps~dgamma(1.0E-3,1.0E-3)
}

The definition of most variables is the same as the definition for WinBUGS code for functional
principal component analysis and functional regression analysis. We describe only the new
variables here.
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1. m_xi[i] is the mean of the of the subject-specific score xi[i,1] on the first eigenfunc-
tion. This is different from the classical functional regression analysis where xi[i,1]
is shrunk towards zero. The vector of parameters m_xi[] has length N_subj and is
estimated in the model.

2. gamma[] is a vector of regression parameters of length 2 relating m_xi[i] to the co-
variates age[i] and BMI[i]. The length 2 is not set in stone and other lengths can be
accommodated when the outcome is regressed on a different set of eigenfunctions.

3. mu is the intercept parameter of the regression of xi[i,1] on the covariates age[i] and
BMI[i]. This is a parameter that will be estimated in the model.

4. age[] and BMI[] are N_subj vectors containing the age and BMI covariates. They are
loaded as data in the program.

5. mu_X[1] and mu_X[2] are the means of the covariates age[] and BMI[]. These are two
parameters that are estimated from the data and are used because some age and BMI
observations are missing.

6. tau[1] and tau[2] are the precisions of the covariates age[] and BMI[]. These are
two parameters that are estimated from the data and are used because some age and
BMI observations are missing.

7. The priors for each gamma[] parameter are mutually independent normals with mean 0
and variance 100.

8. The priors for each of mu_X[l] parameter are mutually independent normals centered
at the empirical mean of the observed covariates m_prior[l] and variance 1000.

9. m_prior[l] are the empirical means of the observed covariates and are loaded as data
in the program.

10. The priors for each of tau[l] parameter are mutually independent gammas with mean
1 and variance 1000.

E. Code for multilevel functional modeling

See Section 4 for model description.

model {
for (i in 1:N_subj)
{

for (t in 1:N_obs)
{

W_1[i,t]~dnorm(m_1[i,t],taueps)
W_2[i,t]~dnorm(m_2[i,t],taueps)
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m_1[i,t]<-X[i,t]+U_1[i,t]
m_2[i,t]<-X[i,t]+U_2[i,t]

X[i,t]<-xi[i,1]*psi_1[t,1]+xi[i,2]*psi_1[t,2]+xi[i,3]*psi_1[t,3]

U_1[i,t]<-zi[i,1,1]*psi_2[t,1]+zi[i,2,1]*psi_2[t,2]+
zi[i,3,1]*psi_2[t,3]+zi[i,4,1]*psi_2[t,4]+zi[i,5,1]*psi_2[t,5]+
zi[i,6,1]*psi_2[t,6]+zi[i,7,1]*psi_2[t,7]+zi[i,8,1]*psi_2[t,8]+
zi[i,9,1]*psi_2[t,9]+zi[i,10,1]*psi_2[t,10]

U_2[i,t]<-zi[i,1,2]*psi_2[t,1]+zi[i,2,2]*psi_2[t,2]+
zi[i,3,2]*psi_2[t,3]+zi[i,4,2]*psi_2[t,4]+zi[i,5,2]*psi_2[t,5]+
zi[i,6,2]*psi_2[t,6]+zi[i,7,2]*psi_2[t,7]+zi[i,8,2]*psi_2[t,8]+
zi[i,9,2]*psi_2[t,9]+zi[i,10,2]*psi_2[t,10]

}

for (k in 1:dim.space_b)
{xi[i,k]~dnorm(0,ll_b[k])}

for (l in 1:dim.space_w)
{zi[i,l,1]~dnorm(0,ll_w[l])
zi[i,l,2]~dnorm(0,ll_w[l])}
}

for (k in 1:dim.space_b)
{ll_b[k]~dgamma(1.0E-3,1.0E-3)
lambda_b[k]<-1/ll_b[k]}

for (l in 1:dim.space_w)
{ll_w[l]~dgamma(1.0E-3,1.0E-3)
lambda_w[l]<-1/ll_w[l]}

taueps~dgamma(1.0E-3,1.0E-3)
sigma_sq_eps<-1/taueps
}

The definition of most variables is the same as the definition for WinBUGS code for functional
principal component analysis and functional regression analysis. The structure is very similar
to the one for functional principal component analysis with the exception that there are two
levels of functional regression.

1. W_1[i,t] and W_2[i,t] are the functional observations at visit 1 and 2, respectively for
subject i at time t. Both matrices W_1[,] and W_2[,] are N_subj×N_obs, are loaded
as data and may contain missing observations.

2. m_1[i,t] and m_2[i,t] are the smooth means of W_1[i,t] and W_2[i,t], respectively,
are unknown and their joint distribution is simulated.
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3. X[i,t] is the subject-specific mean process. X[,] is a N_subj×N_obs dimensional
matrix of parameters that are estimated from the model.

4. U_1[i,t] and U_2[i,t] are the subject/visit specific deviations from the subject-
specific mean. U_1[,] and U_2[,] are N_subj×N_obs dimensional matrices of pa-
rameters that are estimated from the model.

5. psi_1[t,k] and psi_2[t,l] are the level 1 and 2 eigenfunctions evaluated at the time
t. The matrices psi_1[,] and psi_2[,] are N_obs×3 and N_obs×10 dimensional,
respectively, do not contain any missing observation and are loaded as data.

6. xi[i,k] are the scores for the subject i on the kth level 1 eigenfunction psi_1[t,k].
xi[,] is a N_subj×3 dimensional array of parameters that are estimated from the
model.

7. zi[i,l,1] and zi[i,l,2] are the scores for the subject i on the kth level 2 eigenfunction
psi_2[t,k]. zi[,,] is an N_subj×10×2 dimensional array of parameters that are
estimated from the model.

8. ll_b[k] are the precisions for the distribution of the scores xi[i,k]. ll_b[] is a vector
of parameters of size 3 that are estimated from the model.

9. ll_w[l] are the precisions for the distribution of the scores zi[i,l,1] and zi[i,l,2],
as the level 2 scores are assumed exchangeable. ll_w[] is a vector of parameters of size
10 that are estimated from the model.
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