26 research outputs found

    Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nrf2 is a key transcriptional regulator of a battery of genes that facilitate phase II/III drug metabolism and defence against oxidative stress. Nrf2 is largely regulated by Keap1, which directs Nrf2 for proteasomal degradation. The Nrf2/Keap1 system is dysregulated in lung, head and neck, and breast cancers and this affects cellular proliferation and response to therapy. Here, we have investigated the integrity of the Nrf2/Keap1 system in pancreatic cancer.</p> <p>Results</p> <p>Keap1, Nrf2 and the Nrf2 target genes AKR1c1 and GCLC were detected in a panel of five pancreatic cancer cell lines. Mutation analysis of <it>NRF2 </it>exon 2 and <it>KEAP1 </it>exons 2-6 in these cell lines identified no mutations in <it>NRF2 </it>and only synonomous mutations in <it>KEAP1</it>. RNAi depletion of Nrf2 caused a decrease in the proliferation of Suit-2, MiaPaca-2 and FAMPAC cells and enhanced sensitivity to gemcitabine (Suit-2), 5-flurouracil (FAMPAC), cisplatin (Suit-2 and FAMPAC) and gamma radiation (Suit-2). The expression of Nrf2 and Keap1 was also analysed in pancreatic ductal adenocarcinomas (n = 66 and 57, respectively) and matching normal benign epithelium (n = 21 cases). Whilst no significant correlation was seen between the expression levels of Keap1 and Nrf2 in the tumors, interestingly, Nrf2 staining was significantly greater in the cytoplasm of tumors compared to benign ducts (P < 0.001).</p> <p>Conclusions</p> <p>Expression of Nrf2 is up-regulated in pancreatic cancer cell lines and ductal adenocarcinomas. This may reflect a greater intrinsic capacity of these cells to respond to stress signals and resist chemotherapeutic interventions. Nrf2 also appears to support proliferation in certain pancreatic adenocarinomas. Therefore, strategies to pharmacologically manipulate the levels and/or activity of Nrf2 may have the potential to reduce pancreatic tumor growth, and increase sensitivity to therapeutics.</p

    Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms

    Get PDF
    The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and summarizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models

    Systems Analysis of miRNA Biomarkers to Inform Drug Safety

    Get PDF
    microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems

    Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile

    Get PDF
    © 2016 The Author(s)The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems

    Rheumatoid arthritis - treatment: 180. Utility of Body Weight Classified Low-Dose Leflunomide in Japanese Rheumatoid Arthritis

    Get PDF
    Background: In Japan, more than 20 rheumatoid arthritis (RA) patients died of interstitial pneumonia (IP) caused by leflunomide (LEF) were reported, but many of them were considered as the victims of opportunistic infection currently. In this paper, efficacy and safety of low-dose LEF classified by body weight (BW) were studied. Methods: Fifty-nine RA patients were started to administrate LEF from July 2007 to July 2009. Among them, 25 patients were excluded because of the combination with tacrolimus, and medication modification within 3 months before LEF. Remaining 34 RA patients administered 20 to 50 mg/week of LEF were followed up for 1 year and enrolled in this study. Dose of LEF was classified by BW (50 mg/week for over 50 kg, 40 mg/week for 40 to 50 kg and 20 to 30 mg/week for under 40 kg). The average age and RA duration of enrolled patients were 55.5 years old and 10.2 years. Prednisolone (PSL), methotrexate (MTX) and etanercept were used in 23, 28 and 2 patients, respectively. In case of insufficient response or adverse effect, dosage change or discontinuance of LEF were considered. Failure was defined as dosages up of PSL and MTX, or dosages down or discontinuance of LEF. Last observation carried forward method was used for the evaluation of failed patients at 1 year. Results: At 1 year after LEF start, good/ moderate/ no response assessed by the European League Against Rheumatism (EULAR) response criteria using Disease Activity Score, including a 28-joint count (DAS28)-C reactive protein (CRP) were showed in 14/ 10/ 10 patients, respectively. The dosage changes of LEF at 1 year were dosage up: 10, same dosage: 5, dosage down: 8 and discontinuance: 11 patients. The survival rate of patients in this study was 23.5% (24 patients failed) but actual LEF continuous rate was 67.6% (11 patients discontinued) at 1 year. The major reason of failure was liver dysfunction, and pneumocystis pneumonia was occurred in 1 patient resulted in full recovery. One patient died of sepsis caused by decubitus ulcer infection. DAS28-CRP score was decreased from 3.9 to 2.7 significantly. Although CRP was decreased from 1.50 to 0.93 mg/dl, it wasn't significant. Matrix metalloproteinase (MMP)-3 was decreased from 220.0 to 174.2 ng/ml significantly. Glutamate pyruvate transaminase (GPT) was increased from 19 to 35 U/l and number of leukocyte was decreased from 7832 to 6271 significantly. DAS28-CRP, CRP, and MMP-3 were improved significantly with MTX, although they weren't without MTX. Increase of GPT and leukopenia were seen significantly with MTX, although they weren't without MTX. Conclusions: It was reported that the risks of IP caused by LEF in Japanese RA patients were past IP history, loading dose administration and low BW. Addition of low-dose LEF is a potent safe alternative for the patients showing unsatisfactory response to current medicines, but need to pay attention for liver function and infection caused by leukopenia, especially with MTX. Disclosure statement: The authors have declared no conflicts of interes

    Stem cell-derived hepatocytes as a predictive model for drug-induced liver injury: Are we there yet?

    No full text
    Amongst the different types of adverse drug reactions, drug-induced liver injury is the most prominent cause of patient morbidity and mortality. However, the current available hepatic model systems developed for evaluating safety have limited utility and relevance as they do not fully recapitulate a fully functional hepatocyte, and do not sufficiently represent the genetic polymorphisms present in the population. The rapidly advancing research in stem cells raises the possibility of using human pluripotent stem cells in bridging this gap. The generation of human induced pluripotent stem cells via reprogramming of mature human somatic cells may also allow for disease modelling in vitro for the purposes of assessing drug safety and toxicology. This would also allow for better understanding of disease processes and thus facilitate in the potential identification of novel therapeutic targets. This review will focus on the current state of effort to derive hepatocytes from human pluripotent stem cells for potential use in hepatotoxicity evaluation and aims to provide an insight as to where the future of the field may lie

    Identification of flucloxacillin-modified hepatocellular proteins: implications in flucloxacillin-induced liver injury

    No full text
    Flucloxacillin is a ÎČ-lactam antibiotic associated with a high incidence of drug-induced liver injury. Although expression of HLA-B*57:01 is associated with increased susceptibility, little is known of the pathological mechanisms involved in the induction of the clinical phenotype. Irreversible protein modification is suspected to drive the reaction through the provision of flucloxacillin-modified peptides that are presented to T-cells by the protein encoded by the risk allele. In this study, we have shown that flucloxacillin binds to multiple proteins within human primary hepatocytes, including major hepatocellular proteins (haemoglobin and albumin) and mitochondrial proteins. Inhibition of membrane transporters multidrug resistance-associated protein 2 (MRP2) and P-glycoprotein (P-gp) appeared to reduce the levels of covalent binding. A diverse range of proteins with different functions were found to be targeted by flucloxacillin, including adaptor proteins (14-3-3), proteins with catalytic activities (liver carboxylesterase 1, tRNA-splicing endonuclease subunit Sen2, All-trans-retinol dehydrogenase ADH1B, Glutamate dehydrogenase 1 mitochondrial, Carbamoyl-phosphate synthase [ammonia] mitochondrial), and transporters (haemoglobin, albumin and UTP-glucose-1-phosphate uridylyltransferase). These flucloxacillin-modified intracellular proteins could provide a potential source of neo-antigens for HLA-B*57:01 presentation by hepatocytes. More importantly, covalent binding to critical cellular proteins could be the molecular initiating events that lead to flucloxacillin induced cholestasis Data are available via ProteomeXchange with identifier PXD038581
    corecore