427 research outputs found

    Surface Normal Deconvolution: Photometric Stereo for Optically Thick Translucent Objects

    Get PDF
    Computer Vision – ECCV 2014 13th European Conference, Zurich, Switzerland, September 6-12, 2014,This paper presents a photometric stereo method that works for optically thick translucent objects exhibiting subsurface scattering. Our method is built upon the previous studies showing that subsurface scattering is approximated as convolution with a blurring kernel. We extend this observation and show that the original surface normal convolved with the scattering kernel corresponds to the blurred surface normal that can be obtained by a conventional photometric stereo technique. Based on this observation, we cast the photometric stereo problem for optically thick translucent objects as a deconvolution problem, and develop a method to recover accurate surface normals. Experimental results of both synthetic and real-world scenes show the effectiveness of the proposed method

    Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of UPt3UPt_3

    Get PDF
    We discuss possible magnetic structures in UPt3_3 based on our analysis of elastic neutron-scattering experiments in high magnetic fields at temperatures T<TNT<T_N. The existing experimental data can be explained by a single-{\bf q} antiferromagnetic structure with three independent domains. For modest in-plane spin-orbit interactions, the Zeeman coupling between the antiferromagnetic order parameter and the magnetic field induces a rotation of the magnetic moments, but not an adjustment of the propagation vector of the magnetic order. A triple-{\bf q} magnetic structure is also consistent with neutron experiments, but in general leads to a non-uniform magnetization in the crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex

    Neutron Scattering Study of Crystal Field Energy Levels and Field Dependence of the Magnetic Order in Superconducting HoNi2B2C

    Full text link
    Elastic and inelastic neutron scattering measurements have been carried out to investigate the magnetic properties of superconducting (Tc~8K) HoNi2B2C. The inelastic measurements reveal that the lowest two crystal field transitions out of the ground state occurat 11.28(3) and 16.00(2) meV, while the transition of 4.70(9) meV between these two levels is observed at elevated temperatures. The temperature dependence of the intensities of these transitions is consistent with both the ground state and these higher levels being magnetic doublets. The system becomes magnetically long range ordered below 8K, and since this ordering energy kTN ~ 0.69meV << 11.28meV the magnetic properties in the ordered phase are dominated by the ground-state spin dynamics only. The low temperature structure, which coexists with superconductivity, consists of ferromagnetic sheets of Ho{3+ moments in the a-b plane, with the sheets coupled antiferromagnetically along the c-axis. The magnetic state that initially forms on cooling, however, is dominated by an incommensurate spiral antiferromagnetic state along the c-axis, with wave vector qc ~0.054 A-1, in which these ferromagnetic sheets are canted from their low temperature antiparallel configuration by ~17 deg. The intensity for this spiral state reaches a maximum near the reentrant superconducting transition at ~5K; the spiral state then collapses at lower temperature in favor of the commensurate antiferromagnetic state. We have investigated the field dependence of the magnetic order at and above this reentrant superconducting transition. Initially the field rotates the powder particles to align the a-b plane along the field direction, demonstrating that the moments strongly prefer to lie within this plane due to the crystal field anisotropy. Upon subsequently increasing the field atComment: RevTex, 7 pages, 11 figures (available upon request); Physica

    Off-shell Behavior of the π ⁣ ⁣η\pi\!-\!\eta Mixing Amplitude

    Full text link
    We extend a recent calculation of the momentum dependence of the ρω\rho-\omega mixing amplitude to the pseudoscalar sector. The π ⁣ ⁣η\pi\!-\!\eta mixing amplitude is calculated in a hadronic model where the mixing is driven by the neutron-proton mass difference. Closed-form analytic expressions are presented in terms of a few nucleon-meson parameters. The observed momentum dependence of the mixing amplitude is strong enough as to question earlier calculations of charge-symmetry-breaking observables based on the on-shell assumption. The momentum dependence of the π ⁣ ⁣η\pi\!-\!\eta amplitude is, however, practically identical to the one recently predicted for ρω\rho-\omega mixing. Hence, in this model, the ratio of pseudoscalar to vector mixing amplitudes is, to a good approximation, a constant solely determined from nucleon-meson coupling constants. Furthermore, by selecting these parameters in accordance with charge-symmetry-conserving data and SU(3)-flavor symmetry, we reproduce the momentum dependence of the π ⁣ ⁣η\pi\!-\!\eta mixing amplitude predicted from chiral perturbation theory. Alternatively, one can use chiral-perturbation-theory results to set stringent limits on the value of the NNηNN\eta coupling constant.Comment: 13 pages, Latex with Revtex, 3 postscript figures (not included) available on request, SCRI-03089

    Children's understanding of inherited resemblance: The case of two parents. [IF 1.0]

    Get PDF
    Four-, 6-, and 10-year-old children were tested in a forced-choice procedure about their beliefs on the inheritance of physical characteristics. They were presented with pictures of two biological parents, and then asked to select the most likely descendant out of three alternatives: a father look-alike, a mother look-alike, and an alternative representing the combined influence of both parents. In several question pairs, additional information was given about the parent-child relationship that was clearly irrelevant to the principles of heredity to examine the extent to which domain confusions were likely to occur. The majority of the 10-year-olds consistently preferred the alternative in which the combined influence of both parents was shown and domain confusions hardly ever occurred. Four- and 6-year-olds, in contrast, were still influenced by information from alien domains, although even their reasoning about inheritance seemed to be theory-like. Overall, the results suggest that with age, children develop a more restricted and better-defined conception of the principles of heredity, in which the combined influence of both parents is acknowledged

    Measurements of the Composite Fermion masses from the spin polarization of 2-D electrons in the region 1<ν<21<\nu<2

    Full text link
    Measurements of the reflectivity of a 2-D electron gas are used to deduce the polarization of the Composite Fermion hole system formed for Landau level occupancies in the regime 1<\nu<2. The measurements are consistent with the formation of a mixed spin CF system and allow the density of states or `polarization' effective mass of the CF holes to be determined. The mass values at \nu=3/2 are found to be ~1.9m_{e} for electron densities of 4.4 x 10^{11} cm^{-2}, which is significantly larger than those found from measurements of the energy gaps at finite values of effective magnetic field.Comment: 4 pages, 3 fig

    Partially spin polarized quantum Hall effect in the filling factor range 1/3 < nu < 2/5

    Full text link
    The residual interaction between composite fermions (CFs) can express itself through higher order fractional Hall effect. With the help of diagonalization in a truncated composite fermion basis of low-energy many-body states, we predict that quantum Hall effect with partial spin polarization is possible at several fractions between ν=1/3\nu=1/3 and ν=2/5\nu=2/5. The estimated excitation gaps are approximately two orders of magnitude smaller than the gap at ν=1/3\nu=1/3, confirming that the inter-CF interaction is extremely weak in higher CF levels.Comment: 4 pages, 3 figure

    Excluded Volume Effects in the Quark Meson Coupling Model

    Full text link
    Excluded volume effects are incorporated in the quark meson coupling model to take into account in a phenomenological way the hard core repulsion of the nuclear force. The formalism employed is thermodynamically consistent and does not violate causality. The effects of the excluded volume on in-medium nucleon properties and the nuclear matter equation of state are investigated as a function of the size of the hard core. It is found that in-medium nucleon properties are not altered significantly by the excluded volume, even for large hard core radii, and the equation of state becomes stiffer as the size of the hard core increases.Comment: 14 pages, revtex, 6 figure

    Pulsed Magnetic Field Measurements of the Composite Fermion Effective Mass

    Full text link
    Magnetotransport measurements of Composite Fermions (CF) are reported in 50 T pulsed magnetic fields. The CF effective mass is found to increase approximately linearly with the effective field BB^*, in agreement with our earlier work at lower fields. For a BB^* of 14 T it reaches 1.6me1.6m_e, over 20 times the band edge electron mass. Data from all fractions are unified by the single parameter BB^* for all the samples studied over a wide range of electron densities. The energy gap is found to increase like B\sqrt{B^*} at high fields.Comment: Has final table, will LaTeX without error
    corecore