17 research outputs found

    Dissecting the sugarcane expressed sequence tag (SUCEST) database: unraveling flower-specific genes

    Get PDF
    There are almost 260,000 independent clones sequenced from the 5? end in the Sugarcane Expressed Sequence Tag (SUCEST) database, which have been obtained from 37 cDNA libraries prepared from different tissues. This large number of expressed sequence tags (ESTs) provides an opportunity, unprecedented in plants, to perform ?digital differential screening? on selected cDNA libraries. In general, the frequency of a particular EST correlates with transcript accumulation in the tissues from which the cDNA libraries were constructed, so it is possible to compare the whole transcriptome from different tissues using computer-assisted analysis of an EST database. In our research we analyzed sugarcane ESTs according to tissue expression and identified more than 1,000 putative flower-specific genes. The fact that using this technique we were able to identify sugarcane homologues of several genes previously described as pollen-specific justifies this method of assessing tissue specificity. In addition, ESTs similar to genes specific to reproductive organs were detected e.g. a sugarcane gene encoding a meiotic protein essential for assembly of the synaptonemal complex and normal synapsis. This approach also allowed the identification of many flower-specific anonymous sequences that are good candidates for being novel genes involved in plant reproduction. This paper describes the analysis of the gene expression levels of 24 EST clusters during flower development using a ?digital northern blot? constructed from direct EST counts made on the non-normalized sugarcane cDNA libraries.Existem quase 260.000 clones independentes, seqüenciados a partir da extremidade 5?, no banco de dados do SUCEST (Sugarcane Expressed Sequence Tag), os quais foram obtidos a partir de 37 bibliotecas de cDNA preparadas de diferentes tecidos. Este grande número de etiquetas de sequências expressas (ESTs) fornece uma oportunidade, sem precedentes em plantas, de realizar um ?digital differential screening? em bibliotecas de cDNA selecionadas. Geralmente, a frequência de um determinado EST está correlacionada ao acúmulo de transcritos nos tecidos dos quais as bibliotecas de cDNA foram construídas, e desta forma, é possível comparar o transcriptoma completo de diferentes tecidos, usando uma análise computacional de um banco de dados de ESTs. Em nossa pesquisa, analisamos os ESTs de cana-de-açúcar de acordo com sua expressão tecidual e identificamos mais de 1.000 putativos genes específicos de flor. O fato de que usando esta técnica fomos capazes de identificar homológos em cana-de-açúcar, de vários genes previamente descritos como específicos de pólen, sustenta este método de estimar especificidade tecidual. Além disto, ESTs com similaridade a genes específicos de órgãos reprodutivos foram revelados, como por exemplo, o gene que codifica uma proteína meiótica essencial para a montagem do complexo sinaptonêmico e sinapse normal. Esta abordagem também permitiu a identificação de muitas sequências anônimas, específicas de flor, que são boas candidatas para novos genes envolvidos com a reprodução de plantas. Este trabalho descreve a análise dos níveis de expressão gênica de 24 clusters de ESTs, durante o desenvolvimento floral, usando um ?northern blot digital? construído a partir da contagem direta dos ESTs das bibliotecas não-normalizadas de cDNAs de cana-de-açúcar.7784Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    SCI1 Is a Direct Target of AGAMOUS and WUSCHEL and Is Specifically Expressed in the Floral Meristematic Cells

    Get PDF
    The specified floral meristem will develop a pre-established number of floral organs and, thus, terminate the floral meristematic cells. The floral meristematic pool of cells is controlled, among some others, by WUSCHEL (WUS) and AGAMOUS (AG) transcription factors (TFs). Here, we demonstrate that the SCI1 (Stigma/style cell-cycle inhibitor 1) gene, a cell proliferation regulator, starts to be expressed since the floral meristem specification of Nicotiana tabacum and is expressed in all floral meristematic cells. Its expression is higher in the floral meristem and the organs being specified, and then it decreases from outside to inside whorls when the organs are differentiating. SCI1 is co-expressed with N. tabacum WUSCHEL (NtWUS) in the floral meristem and the whorl primordia at very early developmental stages. Later in development, SCI1 is co-expressed with NAG1 (N. tabacum AG) in the floral meristem and specialized tissues of the pistil. In silico analyses identified cis-regulatory elements for these TFs in the SCI1 genomic sequence. Yeast one-hybrid and electrophoresis mobility shift assay demonstrated that both TFs interact with the SCI1 promoter sequence. Additionally, the luciferase activity assay showed that NAG1 clearly activates SCI1 expression, while NtWUS could not do so. Taken together, our results suggest that during floral development, the spatiotemporal regulation of SCI1 by NtWUS and NAG1 may result in the maintenance or termination of proliferative cells in the floral meristem, respectively

    A tobacco flower-specific gene encodes a polyphenol oxidase

    No full text
    Item does not contain fulltex

    Sci1 Is A Component Of The Auxin-dependent Control Of Cell Proliferation In Arabidopsis Upper Pistil

    No full text
    To characterize the recently described SCI1 (stigma/style cell cycle inhibitor 1) gene relationship with the auxin pathway, we have taken the advantage of the Arabidopsis model system and its available tools. At first, we have analyzed the At1g79200 T-DNA insertion mutants and constructed various transgenic plants. The loss- and gain-of-function plants displayed cell number alterations in upper pistils that were controlled by the amino-terminal domain of the protein. These data also confirmed that this locus holds the functional homolog (. AtSCI1) of the Nicotiana tabacum SCI1 gene. Then, we have provided some evidences the auxin synthesis/signaling pathways are required for downstream proper AtSCI1 control of cell number: (a) its expression is downregulated in yuc2yuc6 and npy1 auxin-deficient mutants, (b) triple (. yuc2yuc6sci1) and double (. npy1sci1) mutants mimicked the auxin-deficient phenotypes, with no synergistic interactions, and (c) the increased upper pistil phenotype in these last mutants, which is a consequence of an increased cell number, was able to be complemented by AtSCI1 overexpression. Taken together, our data strongly suggests SCI1 as a component of the auxin signaling transduction pathway to control cell proliferation/differentiation in stigma/style, representing a molecular effector of this hormone on pistil development.229122130Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., Estelle, M., Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins (2001) Nature, 414, pp. 271-276Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D., Chory, J., A role for flavin monooxygenase-like enzymes in auxin biosynthesis (2001) Science, 291, pp. 306-309Dharmasiri, N., Dharmasiri, S., Estelle, M., The F-box protein TIR1 is an auxin receptor (2005) Nature, 435, pp. 441-445Cheng, Y., Dai, X., Zhao, Y., Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis (2006) Genes Dev., 20, pp. 1790-1799Brunoud, G., Wells, D.M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A.H., Beeckman, T., Vernoux, T., A novel sensor to map auxin response and distribution at high spatio-temporal resolution (2012) Nature, 482, pp. 103-106Zhao, Y., Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants (2012) Mol. Plant, 5, pp. 334-338Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.Y., Dolezal, K., Schlereth, A., Alonso, J.M., TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development (2008) Cell, 133, pp. 177-191Tao, Y., Ferrer, J.L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Chory, J., Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants (2008) Cell, 133, pp. 164-176Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Zhao, Y., Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 18518-18523Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Kasahara, H., The main auxin biosynthesis pathway in Arabidopsis (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 18512-18517Bennett, S.R.M., Alvarez, J., Bossinger, G., Smyth, D.R., Morphogenesis in pinoid mutants of Arabidopsis thaliana (1995) Plant J., 8, pp. 505-520Furutani, M., Kajiwara, T., Kato, T., Treml, B.S., Stockum, C., Torres-Ruiz, R.A., Tasaka, M., The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level (2007) Development, 134, pp. 3849-3859Li, Y., Dai, X., Cheng, Y., Zhao, Y., NPY genes play an essential role in root gravitropic responses in Arabidopsis (2011) Mol. Plant, 4, pp. 171-179Scherer, G.F., Labusch, C., Effendi, Y., Phospholipases and the network of auxin signal transduction with ABP1 and TIR1 as two receptors: a comprehensive and provocative model (2012) Front. Plant Sci., 3, p. 56Cheng, Y., Qin, G., Dai, X., Zhao, Y., NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 21017-21022Michniewicz, M., Zago, M.K., Abas, L., Weijers, D., Schweighofer, A., Meskiene, I., Heisler, M.G., Friml, J., Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux (2007) Cell, 130, pp. 1044-1056Furutani, M., Sakamoto, N., Yoshida, S., Kajiwara, T., Robert, H.S., Friml, J., Tasaka, M., Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers (2011) Development, 138, pp. 2069-2078Kant, S., Bi, Y.M., Zhu, T., Rothstein, S.J., SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice (2009) Plant Physiol., 151, pp. 691-701Christensen, S.K., Dagenais, N., Chory, J., Weigel, D., Regulation of auxin response by the protein kinase PINOID (2000) Cell, 100, pp. 469-478Chen, Q., Dai, X., De-Paoli, H., Cheng, Y., Takebayashi, Y., Kasahara, H., Kamiya, Y., Zhao, Y., Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots (2014) Plant Cell Physiol.Benjamins, R., Scheres, B., Auxin: the looping star in plant development (2008) Annu. Rev. Plant Biol., 59, pp. 443-465Sundberg, E., Ostergaard, L., Distinct and dynamic auxin activities during reproductive development (2009) Cold Spring Harb. Perspect. Biol., 1, p. a001628Staldal, V., Sundberg, E., The role of auxin in style development and apical-basal patterning of the Arabidopsis thaliana gynoecium (2009) Plant Signal. Behav., 4, pp. 83-85Sundaresan, V., Alandete-Saez, M., Pattern formation in miniature: the female gametophyte of flowering plants (2010) Development, 137, pp. 179-189Inze, D., De Veylder, L., Cell cycle regulation in plant development (2006) Annu. Rev. Genet., 40, pp. 77-105De Veylder, L., Beeckman, T., Beemster, G.T., Krols, L., Terras, F., Landrieu, I., van der Schueren, E., Inze, D., Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis (2001) Plant Cell, 13, pp. 1653-1668Churchman, M.L., Brown, M.L., Kato, N., Kirik, V., Hulskamp, M., Inze, D., De Veylder, L., Larkin, J.C., SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana (2006) Plant Cell, 18, pp. 3145-3157Peres, A., Churchman, M.L., Hariharan, S., Himanen, K., Verkest, A., Vandepoele, K., Magyar, Z., De Veylder, L., Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses (2007) J. Biol. Chem., 282, pp. 25588-25596DePaoli, H.C., Brito, M.S., Quiapim, A.C., Teixeira, S.P., Goldman, G.H., Dornelas, M.C., Goldman, M.H., Stigma/style cell cycle inhibitor 1 (SCI1), a tissue-specific cell cycle regulator that controls upper pistil development (2011) New Phytol., 190, pp. 882-895DePaoli, H.C., Goldman, G.H., Goldman, M.H., SCI1, the first member of the tissue-specific inhibitors of CDK (TIC) class, is probably connected to the auxin signaling pathway (2012) Plant Signal. Behav., 7, pp. 53-58Ren, H., Santner, A., del Pozo, J.C., Murray, J.A., Estelle, M., Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases (2008) Plant J., 53, pp. 705-716Sanz, L., Dewitte, W., Forzani, C., Patell, F., Nieuwland, J., Wen, B., Quelhas, P., Murray, J.A., The Arabidopsis D-type cyclin CYCD2;1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation (2011) Plant Cell, 23, pp. 641-660Sambrook, J., Russell, D.W., (2001) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYCheng, Y., Qin, G., Dai, X., Zhao, Y., NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 18825-18829Jackson, D., In situ hybridisation in plants (1991) Molecular Plant Pathology: A Practical Approach, , Oxford University Press, D.J. Bowles, S.J. Gurr, P. McPherson (Eds.)O'Brien, T.P., Feder, N., McCully, M.E., Polychromatic staining of plant cell walls by toluidine blue (1964) Protoplasma, p. 6Nemhauser, J.L., Feldman, L.J., Zambryski, P.C., Auxin and ETTIN in Arabidopsis gynoecium morphogenesis (2000) Development, 127, pp. 3877-3888Satina, S., Blakeslee, A.F., Periclinal chimeras in Datura stramonium in relation to development of leaf and flower (1941) Am. J. Bot., 28, pp. 862-871Heslop-Harrison, Y., Shivanna, K.R., The receptive surface of the angiosperm stigma (1977) Ann. Bot., 41, p. 26Smyth, D.R., Bowman, J.L., Meyerowitz, E.M., Early flower development in Arabidopsis (1990) Plant Cell, 2, pp. 755-767Wang, H., Zhou, Y., Bird, D.A., Fowke, L.C., Functions, regulation and cellular localization of plant cyclin-dependent kinase inhibitors (2008) J. Microsc., 231, pp. 234-246Le Foll, M., Blanchet, S., Millan, L., Mathieu, C., Bergounioux, C., Glab, N., The plant CDK inhibitor NtKIS1a interferes with dedifferentiation, is specifically down regulated during development and interacts with a JAB1 homolog (2008) Plant Sci., 175, pp. 513-523Eklund, D.M., Staldal, V., Valsecchi, I., Cierlik, I., Eriksson, C., Hiratsu, K., Ohme-Takagi, M., Sundberg, E., The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis (2010) Plant Cell, 22, pp. 349-363Baylis, T., Cierlik, I., Sundberg, E., Mattsson, J., Short internodes/stylish genes, regulators of auxin biosynthesis, are involved in leaf vein development in Arabidopsis thaliana (2013) New Phytol., 197, pp. 737-750Xie, Q., Guo, H.S., Dallman, G., Fang, S.Y., Weissman, A.M., Chua, N.H., SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals (2002) Nature, 419, pp. 167-170Stals, H., Casteels, P., Van Montagu, M., Inze, D., Regulation of cyclin-dependent kinases in Arabidopsis thaliana (2000) Plant Mol. Biol., 43, pp. 583-593Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., Sheen, J., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 (2013) Nat. Biotechnol., 31, pp. 688-69

    Determinação da viabilidade de protoplastos irradiados de laranja 'pêra' Determination of viability of irradiated 'pera' orange protoplasts

    No full text
    Estudou-se a viabilidade de protoplastos de laranja 'Pêra' (Citrus sinensis Osbeck), submetidos a diferentes doses de radiação gama, com a finalidade de determinar a dose letal (DL) 50 - dose que causa 50% de letalidade. Empregou-se a análise por fluorescência, utilizando-se o corante diacetato de fluoresceína (DAF): suas diluições testadas - 1:50; 1:100 e 1:150 - não mostraram diferenças significativas entre si, tendo sido possível o uso da maior diluição para a determinação da viabilidade dos protoplastos. A viabilidade mostrou-se inversamente proporcional às doses de radiação gama e a DL 50 foi cerca de 41 Gy. Os protoplastos não irradiados apresentaram até 84% de viabilidade, quando esta foi estudada logo após o isolamento daqueles.<br>The viability of 'Pera' orange (Citrus sinensis Osbeck) protoplasts, submitted to different dosages of Gamma radiation, was studied to determine the lethal dose (DL) 50. The analysis by fluorescence was employed using Fluorescein diacetate (FDA). The dilutions of FDA (1:50; 1:100 and 1:150) did not show any statistical difference: Then it was possible to use the 1:150 dilution in order to determine the protoplasts viability. The viability was inversaly proportional to Gamma radiation and the DL 50 was about 41 Gy. The non-irradiated protoplasts had their viability up to 84% when tested as soon after their isolation
    corecore