1,335 research outputs found

    Population-scale organization of cerebellar granule neuron signaling during a visuomotor behavior.

    Get PDF
    Granule cells at the input layer of the cerebellum comprise over half the neurons in the human brain and are thought to be critical for learning. However, little is known about granule neuron signaling at the population scale during behavior. We used calcium imaging in awake zebrafish during optokinetic behavior to record transgenically identified granule neurons throughout a cerebellar population. A significant fraction of the population was responsive at any given time. In contrast to core precerebellar populations, granule neuron responses were relatively heterogeneous, with variation in the degree of rectification and the balance of positive versus negative changes in activity. Functional correlations were strongest for nearby cells, with weak spatial gradients in the degree of rectification and the average sign of response. These data open a new window upon cerebellar function and suggest granule layer signals represent elementary building blocks under-represented in core sensorimotor pathways, thereby enabling the construction of novel patterns of activity for learning

    Can people guess what happened to others from their reactions?

    Get PDF
    Are we able to infer what happened to a person from a brief sample of his/her behaviour? It has been proposed that mentalising skills can be used to retrodict as well as predict behaviour, that is, to determine what mental states of a target have already occurred. The current study aimed to develop a paradigm to explore these processes, which takes into account the intricacies of real-life situations in which reasoning about mental states, as embodied in behaviour, may be utilised. A novel task was devised which involved observing subtle and naturalistic reactions of others in order to determine the event that had previously taken place. Thirty-five participants viewed videos of real individuals reacting to the researcher behaving in one of four possible ways, and were asked to judge which of the four ‘scenarios’ they thought the individual was responding to. Their eye movements were recorded to establish the visual strategies used. Participants were able to deduce successfully from a small sample of behaviour which scenario had previously occurred. Surprisingly, looking at the eye region was associated with poorer identification of the scenarios, and eye movement strategy varied depending on the event experienced by the person in the video. This suggests people flexibly deploy their attention using a retrodictive mindreading process to infer events

    Prevalence and Subtypes of Mild Cognitive Impairment in Parkinson's Disease.

    Get PDF
    The current study examined the prevalence and subtypes of Mild Cognitive Impairment (MCI) in an Australian sample of people with Parkinson's Disease (PD). Seventy participants with PD completed neuropsychological assessments of their cognitive performance, using MDS Task Force Level II diagnostic criteria for PD-MCI. A cut-off score of less than one standard deviation (SD) below normative data determined impaired performance on a neuropsychological test. Of 70 participants, 45 (64%) met Level II diagnostic criteria for PD-MCI. Among those with PD-MCI, 42 (93%) were identified as having multiple domain impairment (28 as amnestic multiple domain and 14 as nonamnestic multiple domain). Single domain impairment was less frequent (2 amnestic/1 nonamnestic). Significant differences were found between the PD-MCI and Normal Cognition groups, across all cognitive domains. Multiple domain cognitive impairment was more frequent than single domain impairment in an Australian sample of people with PD. However, PD-MCI is heterogeneous and current prevalence and subtyping statistics may be an artifact of variable application methods of the criteria (e.g., cut off scores and number of tests). Future longitudinal studies refining the criteria will assist with subtyping the progression of PD-MCI, while identifying individuals who may benefit from pharmacological and nonpharmacological interventions

    Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough

    Get PDF
    Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV) in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth

    Composite magnetostrictive materials for advanced automotive magnetomechanical sensors

    Get PDF
    In this paper we present the development of a composite magnetostrictive material for automotive applications. The material is based on cobaltferrite,CoO⋅Fe2O3, and contains a small fraction of metallic matrix phase that serves both as a liquid-phasesintering aid during processing and enhances the mechanical properties over those of a simple sinteredferrite ceramic. In addition the metal matrix makes it possible to braze the material, making the assembly of a sensor relatively simple. The material exhibits good sensitivity and should have high corrosion resistance, while at the same time it is low in cost

    Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta.</p> <p>Methods</p> <p>Daily measures of twelve ambient air pollutants were analyzed: NO<sub>2</sub>, NO<sub>x</sub>, O<sub>3</sub>, SO<sub>2</sub>, CO, PM<sub>10 </sub>mass, PM<sub>2.5 </sub>mass, and PM<sub>2.5 </sub>components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits.</p> <p>Results</p> <p>Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed.</p> <p>Conclusions</p> <p>For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling instrument imprecision and spatial variability as different error types, we estimate direction and magnitude of the effects of error over a range of error types.</p
    corecore