4,700 research outputs found

    Управління виробничими запасами на підприємстві (на матеріалах ПрАТ «Детвілер Ущільнюючі Технології України»)

    Get PDF
    . The second-order matching problem is the problem of determining, for a finite set {#t i , s i # | i # I} of pairs of a second-order term t i and a first-order closed term s i , called a matching expression, whether or not there exists a substitution # such that t i # = s i for each i # I . It is well-known that the second-order matching problem is NP-complete. In this paper, we introduce the following restrictions of a matching expression: k-ary, k-fv , predicate, ground , and function-free. Then, we show that the second-order matching problem is NP-complete for a unary predicate, a unary ground, a ternary function-free predicate, a binary function-free ground, and an 1-fv predicate matching expressions, while it is solvable in polynomial time for a binary function-free predicate, a unary function-free, a k-fv function-free (k # 0), and a ground predicate matching expressions. 1 Introduction The unification problem is the problem of determining whether or not any two ter..

    Toward a global description of the nucleus-nucleus interaction

    Get PDF
    Extensive systematization of theoretical and experimental nuclear densities and of optical potential strengths exctracted from heavy-ion elastic scattering data analyses at low and intermediate energies are presented.The energy-dependence of the nuclear potential is accounted for within a model based on the nonlocal nature of the interaction.The systematics indicate that the heavy-ion nuclear potential can be described in a simple global way through a double-folding shape,which basically depends only on the density of nucleons of the partners in the collision.The poissibility of extracting information about the nucleon-nucleon interaction from the heavy-ion potential is investigated.Comment: 12 pages,12 figure

    Report of the LHC Computing Grid Project. RTAG 12: Collaborative Tools

    No full text
    This document is the final report of the LHC Computing Grid (LCG) Project's Requirements and Technical Assessment Group (RTAG 12) on Collaborative Tools. It presents a summary of the requirements of the LHC collaborations for Collaborative Tools, assesses the current status of those tools in common use, discusses likely relevant future development, and provides recommendations for action by the LCG, the collaborations, and CERN for the immediate and long-term future. The requirements and assessments were assembled from formal and informal interactions between members of the RTAG, representatives of the LHC collaborations, CERN IT, and experts in the field of Collaborative Tools

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Study of coupling loss on bi-columnar BSCCO/Ag tapes by a.c. susceptibility measurements

    Full text link
    Coupling losses were studied in composite tapes containing superconducting material in the form of two separate stacks of densely packed filaments embedded in a metallic matrix of Ag or Ag alloy. This kind of sample geometry is quite favorable for studying the coupling currents and in particular the role of superconducting bridges between filaments. By using a.c. susceptibility technique, the electromagnetic losses as function of a.c. magnetic field amplitude and frequency were measured at the temperature T = 77 K for two tapes with different matrix composition. The length of samples was varied by subsequent cutting in order to investigate its influence on the dynamics of magnetic flux penetration. The geometrical factor χ0\chi_0 which takes into account the demagnetizing effects was established from a.c. susceptibility data at low amplitudes. Losses vs frequency dependencies have been found to agree nicely with the theoretical model developed for round multifilamentary wires. Applying this model, the effective resistivity of the matrix was determined for each tape, by using only measured quantities. For the tape with pure silver matrix its value was found to be larger than what predicted by the theory for given metal resistivity and filamentary architecture. On the contrary, in the sample with a Ag/Mg alloy matrix, an effective resistivity much lower than expected was determined. We explain these discrepancies by taking into account the properties of the electrical contact of the interface between the superconducting filaments and the normal matrix. In the case of soft matrix of pure Ag, this is of poor quality, while the properties of alloy matrix seem to provoke an extensive creation of intergrowths which can be actually observed in this kind of samples.Comment: 20 pages 11 figure, submitted to Superconductor Science and Technolog
    corecore