4,499 research outputs found

    Establishing an international research collaborative for naturopathy: The International Research Consortium of Naturopathic Academic Clinics (IRCNAC)

    Full text link
    © 2017 Elsevier Ltd Naturopathy is a system of healthcare through which practitioners apply core philosophies, theories and principles to integrate medical knowledge with natural treatment options. In recent years the naturopathic community has developed a stronger international coherence. Alongside this growing connectivity in the global naturopathic profession, there have been a number of calls for more systematic research attention to be devoted to naturopathy as a substantive research topic, as well as a need for the naturopathic profession to hone a culture of research and evidence-based practices and skillsets. Progress in this area has been made through the development of more pragmatic and whole systems naturopathic research. One aspect which is currently missing in the global naturopathic research landscape despite this growing pattern of practice-based, whole systems research is the application of international multicentre research projects. In response, we have established a research consortium for naturopathic academic clinics in four countries and across multiple world regions. This paper serves to overview the mission, scope and membership of the research consortium and explore some of the research designs and questions which it may support

    Exact Computation of Influence Spread by Binary Decision Diagrams

    Full text link
    Evaluating influence spread in social networks is a fundamental procedure to estimate the word-of-mouth effect in viral marketing. There are enormous studies about this topic; however, under the standard stochastic cascade models, the exact computation of influence spread is known to be #P-hard. Thus, the existing studies have used Monte-Carlo simulation-based approximations to avoid exact computation. We propose the first algorithm to compute influence spread exactly under the independent cascade model. The algorithm first constructs binary decision diagrams (BDDs) for all possible realizations of influence spread, then computes influence spread by dynamic programming on the constructed BDDs. To construct the BDDs efficiently, we designed a new frontier-based search-type procedure. The constructed BDDs can also be used to solve other influence-spread related problems, such as random sampling without rejection, conditional influence spread evaluation, dynamic probability update, and gradient computation for probability optimization problems. We conducted computational experiments to evaluate the proposed algorithm. The algorithm successfully computed influence spread on real-world networks with a hundred edges in a reasonable time, which is quite impossible by the naive algorithm. We also conducted an experiment to evaluate the accuracy of the Monte-Carlo simulation-based approximation by comparing exact influence spread obtained by the proposed algorithm.Comment: WWW'1

    Classification of Message Spreading in a Heterogeneous Social Network

    Get PDF
    Nowadays, social networks such as Twitter, Facebook and LinkedIn become increasingly popular. In fact, they introduced new habits, new ways of communication and they collect every day several information that have different sources. Most existing research works fo-cus on the analysis of homogeneous social networks, i.e. we have a single type of node and link in the network. However, in the real world, social networks offer several types of nodes and links. Hence, with a view to preserve as much information as possible, it is important to consider so-cial networks as heterogeneous and uncertain. The goal of our paper is to classify the social message based on its spreading in the network and the theory of belief functions. The proposed classifier interprets the spread of messages on the network, crossed paths and types of links. We tested our classifier on a real word network that we collected from Twitter, and our experiments show the performance of our belief classifier

    Scale separation in granular packings: stress plateaus and fluctuations

    Full text link
    It is demonstrated, by numerical simulations of a 2D assembly of polydisperse disks, that there exists a range (plateau) of coarse graining scales for which the stress tensor field in a granular solid is nearly resolution independent, thereby enabling an `objective' definition of this field. Expectedly, it is not the mere size of the the system but the (related) magnitudes of the gradients that determine the widths of the plateaus. Ensemble averaging (even over `small' ensembles) extends the widths of the plateaus to sub-particle scales. The fluctuations within the ensemble are studied as well. Both the response to homogeneous forcing and to an external compressive localized load (and gravity) are studied. Implications to small solid systems and constitutive relations are briefly discussed.Comment: 4 pages, 4 figures, RevTeX 4, Minor corrections to match the published versio

    Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and -resistant P388 Leukemia cell lines

    Get PDF
    The relationship between DNA topoisomerase II activity and drug resistance was studied in cloned cell lines of Adriamycin (ADR)-sensitive and -resistant P388 leukemia; drug resistant P388/ADR/3 (clone 3) and P388/ADR/7 (clone 7) cells are 5- and 10-fold more resistant to ADR than the sensitive cell line P388/4 (Cancer Res., 46: 2978, 1986). Topoisomerase II catalytic activity in crude nuclear extracts was reduced in drug-resistant cells as determined qualitatively by decatenation of kDNA. Using the centrifugal method of quantitative analysis, topoisomerase II catalytic activity (mean ± SE) was 81 ± 10 units/mg total nuclear protein in sensitive cells, 29 ± 2 units/mg total nuclear protein in resistant clone 3 cells, and 16 ± 2 units/mg total nuclear protein in resistant clone 7 cells; these differences were highly significant (P < 0.005). Similarly, quantitative analysis of DNA cleavage activity using 3' 32P-end-labeled pBR322 restriction fragments showed that drug-stimulated topoisomerase II cleavage activity in nuclear extracts from sensitive cells was approximately 1.7- and 2.9-fold greater than that from resistant clone 3 and 7 cells, respectively. Western blot analysis of nuclear extracts from the three cell lines using antibody against the C-terminal half of recombinant-prepared human topoisomerase II polypeptide revealed reduced immunoreactivity of topoisomerase II protein in the drug-resistant cells. These data suggest that reduced topoisomerase II activity in resistant cells, which may represent quantitative reduction of the enzyme, may be another property contributing to multifactorial drug resistance in these cells

    Optical characteristics of nanocrystalline AlxGa1-xN thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    Get PDF
    Cataloged from PDF version of article.Gallium nitride (GaN), aluminum nitride (AlN), and AlxGa(1-x)N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200 degrees C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and AlxGa1-xN films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2 nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4 nm when the annealing duration increased from 30 min to 2 h (800 degrees C). For all films, the average optical transmission was similar to 85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and AlxGa1-xN were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (lambda = 550 nm) with the increased Al content x (0 400 nm). Postdeposition annealing at 900 degrees C for 2 h considerably lowered the refractive index value of GaN films (2.33-1.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95 eV, and it decreased to 3.90 eV for films annealed at 800 degrees C for 30 min and 2 h. On the other hand, this value increased to 4.1 eV for GaN films annealed at 900 degrees C for 2 h. This might be caused by Ga2O3 formation and following phase change. The optical bandgap value of as-deposited AlxGa1-xN films decreased from 5.75 to 5.25 eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not affect the bandgap of Al-rich films. (C) 2014 American Vacuum Society

    Hollow cathode plasma-assisted atomic layer deposition of crystalline AIN, GaN and AI Ga1- N thin films at low temperatures

    Get PDF
    Cataloged from PDF version of article.The authors report on the use of hollow cathode plasma for low-temperature plasma-assisted atomic layer deposition (PA-ALD) of crystalline AlN, GaN and AlxGa1 xN thin films with low impurity concentrations. Depositions were carried out at 200 C using trimethylmetal precursors and NH3 or N2/H2 plasma. X-ray photoelectron spectroscopy showed the presence of 2.5–3 at.% O in AlN and 1.5–1.7 at.% O in GaN films deposited using NH3 and N2/H2 plasma, respectively. No C impurities were detected within the films. Secondary ion mass spectroscopy analyses performed on the films deposited using NH3 plasma revealed the presence of O, C (both <1 at.%), and H impurities. GIXRD patterns indicated polycrystalline thin films with wurtzite crystal structure. Hollow cathode PA-ALD parameters were optimized for AlN and GaN thin films using N2/H2 plasma. Trimethylmetal and N2/H2 saturation curves evidenced the selflimiting growth of AlN and GaN at 200 C. AlN exhibited linear growth with a growth per cycle (GPC) of 1.0 A. For GaN, the GPC decreased with the increasing number of deposition cycles, indicating ˚ substrate-enhanced growth. The GPC calculated from a 900-cycle GaN deposition was 0.22 A. ˚ Ellipsometric spectra of the samples were modeled using the Cauchy dispersion function, from which the refractive indices of 59.2 nm thick AlN and 20.1 nm thick GaN thin films were determined to be 1.94 and 2.17 at 632 nm, respectively. Spectral transmission measurements of AlN, GaN and AlxGa1 xN thin films grown on double side polished sapphire substrates revealed near-ideal visible transparency with minimal absorption. Optical band edge values of the AlxGa1 xN films shifted to lower wavelengths with the increasing Al content, indicating the tunability of band edge values with the alloy composition

    Low-Temperature Deposition of Hexagonal Boron Nitride via Sequential Injection of Triethylboron and N2/H2 Plasma

    Get PDF
    Cataloged from PDF version of article.Hexagonal boron nitride (hBN) thin films were deposited on silicon and quartz substrates using sequential exposures of triethylboron and N 2 /H 2 plasma in a hollow-cathode plasma- assisted atomic layer deposition reactor at low temperatures ( ≤ 450 ° C). A non-saturating film deposition rate was observed for substrate temperatures above 250 ° C. BN films were charac- terized for their chemical composition, crystallinity, surface morphology, and optical properties. X-ray photoelectron spec- troscopy (XPS) depicted the peaks of boron, nitrogen, carbon, and oxygen at the film surface. B 1s and N 1s high-resolution XPS spectra confirmed the presence of BN with peaks located at 190.8 and 398.3 eV, respectively. As deposited films were polycrystalline, single-phase hBN irrespective of the deposition temperature. Absorption spectra exhibited an optical band edge at ~ 5.25 eV and an optical transmittance greater than 90% in the visible region of the spectrum. Refractive index of the hBN film deposited at 450 ° C was 1.60 at 550 nm, which increased to 1.64 after postdeposition annealing at 800 ° C for 30 min. These results represent the first demonstration of hBN deposi- tion using low-temperature hollow-cathode plasma-assisted sequential deposition technique. © 2014 The American Ceramic Society

    Quantum Gambling Using Three Nonorthogonal States

    Full text link
    We provide a quantum gambling protocol using three (symmetric) nonorthogonal states. The bias of the proposed protocol is less than that of previous ones, making it more practical. We show that the proposed scheme is secure against non-entanglement attacks. The security of the proposed scheme against entanglement attacks is shown heuristically.Comment: no essential correction, 4 pages, RevTe

    Naturopathy as a model of prevention-oriented, patient-centered primary care: A disruptive innovation in health care

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Background and Objective: The concept of a “disruptive innovation,” recently extended to health care, refers to an emerging technology that represents a new market force combined with a new value system, that eventually displaces some, or all, of the current leading “stakeholders, products and strategic alliances.” Naturopathy is a distinct system of traditional and complementary medicine recognized by theWorld Health Organization (WHO), emerging as a model of primary care. The objective here is to describe Naturopathy in the context of the criteria for a disruptive innovation. Methods: An evidence synthesis was conducted to evaluate Naturopathy as a potentially disruptive technology according to the defining criteria established by leading economists and health technology experts: (1) The innovation must cure disease; (2) must transform the way medicine is practiced; or (3) have an impact that could be disruptive or sustaining, depending on how it is integrated into the current healthcare marketplace. Results: The fact that Naturopathy de-emphasizes prescription drug and surgical interventions in favor of nonpharmacological health promotion and self-care could disrupt the present economic model that fuels health care costs. The patient-centered orientation of Naturopathy, combined with an emphasis on preventive behaviors and popular complementary and integrative health services like natural products, mind and body therapies, and other therapies not widely represented in current primary care models increase the likelihood for disruption. Conclusions: Because of its patient-centered approach and emphasis on prevention, naturopathy may disrupt or remain a durable presence in healthcare delivery depending on policymaker decisions
    • …
    corecore