It is demonstrated, by numerical simulations of a 2D assembly of polydisperse
disks, that there exists a range (plateau) of coarse graining scales for which
the stress tensor field in a granular solid is nearly resolution independent,
thereby enabling an `objective' definition of this field. Expectedly, it is not
the mere size of the the system but the (related) magnitudes of the gradients
that determine the widths of the plateaus. Ensemble averaging (even over
`small' ensembles) extends the widths of the plateaus to sub-particle scales.
The fluctuations within the ensemble are studied as well. Both the response to
homogeneous forcing and to an external compressive localized load (and gravity)
are studied. Implications to small solid systems and constitutive relations are
briefly discussed.Comment: 4 pages, 4 figures, RevTeX 4, Minor corrections to match the
published versio