102 research outputs found

    Hydrodynamic properties of fin whale flippers predict maximum rolling performance

    Get PDF
    Maneuverability is one of the most important and least understood aspects of animal locomotion. The hydrofoil-like flippers of cetaceans are thought to function as control surfaces that effect maneuvers, but quantitative tests of this hypothesis have been lacking. Here, we constructed a simple hydrodynamic model to predict the longitudinal-axis roll performance of fin whales, and we tested its predictions against kinematic data recorded by on-board movement sensors from 27 free-swimming fin whales. We found that for a given swimming speed and roll excursion, the roll velocity of fin whales calculated from our field data agrees well with that predicted by our hydrodynamic model. Although fluke and body torsion may further influence performance, our results indicate that lift generated by the flippers is sufficient to drive most of the longitudinal-axis rolls used by fin whales for feeding and maneuvering

    From individual responses to population effects : integrating a decade of multidisciplinary research on blue whales and sonar

    Get PDF
    Funding: Office of Naval Research (GrantNumber(s): N00014-19-1-2464).As ecosystems transform under climate change and expanding human activities, multidisciplinary integration of empirical research, conceptual frameworks and modelling methods is required to predict, monitor and manage the cascading effects on wildlife populations. For example, exposure to anthropogenic noise can lead to changes in the behaviour and physiology of individual marine mammals, but management is complicated by uncertainties on the long-term effects at a population level. We build on a decade of diverse efforts to demonstrate the strengths of integrating research on multiple stressors for assessing population-level effects. Using the case study of blue whales exposed to military sonar in the eastern north Pacific, we model how behavioural responses and environmental effects induced by climate change affect female survival and reproductive success. Environmental changes were predicted to severely affect vital rates, while the current regime of sonar activities was not. Simulated disturbance had a stronger effect on reproductive success than adult survival, as predicted by life-history theory. We show that information on prey resources is critical for robust predictions, as are data on baseline behavioural patterns, energy budgets, body condition and contextual responses to noise. These results will support effective management of the interactions between sonar operations and blue whales in the study area, while providing pragmatic guidance for future data collection to reduce key uncertainties. Our study provides important lessons for the successful integration of multidisciplinary research to inform the assessment of the effects of noise and other anthropogenic stressors on marine predator populations in the context of a changing environment.Publisher PDFPeer reviewe

    Fast and Furious: Energetic Tradeoffs and Scaling of High-Speed Foraging in Rorqual Whales

    Get PDF
    Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s–1) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey—and more energy—at a lower cost

    Scaling of oscillatory kinematics and Froude efficiency in baleen whales

    Get PDF
    High efficiency lunate-tail swimming with high-aspect-ratio lifting surfaces has evolved in many vertebrate lineages, from fish to cetaceans. Baleen whales (Mysticeti) are the largest swimming animals that exhibit this locomotor strategy, and present an ideal study system to examine how morphology and the kinematics of swimming scale to the largest body sizes. We used data from whale-borne inertial sensors coupled with morphometric measurements from aerial drones to calculate the hydrodynamic performance of oscillatory swimming in six baleen whale species ranging in body length from 5 to 25 m (fin whale, Balaenoptera physalus; Bryde\u27s whale, Balaenoptera edeni; sei whale, Balaenoptera borealis; Antarctic minke whale, Balaenoptera bonaerensis; humpback whale, Megaptera novaeangliae; and blue whale, Balaenoptera musculus). We found that mass-specific thrust increased with both swimming speed and body size. Froude efficiency, defined as the ratio of useful power output to the rate of energy input (Sloop, 1978), generally increased with swimming speed but decreased on average with increasing body size. This finding is contrary to previous results in smaller animals, where Froude efficiency increased with body size. Although our empirically parameterized estimates for swimming baleen whale drag were higher than those of a simple gliding model, oscillatory locomotion at this scale exhibits generally high Froude efficiency as in other adept swimmers. Our results quantify the fine-scale kinematics and estimate the hydrodynamics of routine and energetically expensive swimming modes at the largest scale

    Energy densities of key prey species in the California Current Ecosystem

    Get PDF
    The energetic content of primary and secondary consumers is central to understanding ecosystem functioning, community assembly, and trophodynamics. However, these foundational data are often limited, especially for marine ecosystems. Here we report the energy densities of important prey species in the California Current Ecosystem. We investigated variation in energy density within and between species and explored potential underlying causes of these differences. Northern anchovy (Engraulis mordax) is the most energy dense of the species analyzed with a median value nearly twice as high as was found in krill (Euphausia pacifica and Thysanoessa spinifera). Relationships with body size varied among species; krill energy density increased, with both length and wet weight. In addition, we find that anchovy, sardine (Sardinops sagax), and market squid (Doryteuthis opalescens) have higher energy content in the summer and fall as compared to the spring. This aligns with the ecosystem phenology of strong upwelling during spring (March – May) driving high primary productivity, followed by widespread predator presence through the summer and fall (June – October). Our results inform food web studies in the California Current and suggest new avenues for investigating differences in species and ecosystem energetics in an era of rapid global change

    Diving behavior and fine-scale kinematics of free-ranging Risso’s dolphins foraging in shallow and deep-water habitats

    Get PDF
    Funding: SOCAL-BRS project, Chief of Naval Operations Environmental Readiness Division, the US Navy's Living Marine Resources Program, and the Office of Naval Research Marine Mammal Program; ONR grant N00014-15-1-255 and the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland supported by the Scottish Funding Council, grant reference HR09011, and contributing institutions) (PLT).Air-breathing marine predators must balance the conflicting demands of oxygen conservation during breath-hold and the cost of diving and locomotion to capture prey. However, it remains poorly understood how predators modulate foraging performance when feeding at different depths and in response to changes in prey distribution and type. Here, we used high-resolution multi-sensor tags attached to Risso’s dolphins (Grampus griseus) and concurrent prey surveys to quantify their foraging performance over a range of depths and prey types. Dolphins (N=33) foraged in shallow and deep habitats [seabed depths less or more than 560m, respectively] and within the deep habitat, in vertically stratified prey features occurring at several aggregation levels. Generalized linear mixed-effects models indicated that dive kinematics were driven by foraging depth rather than habitat. Bottom-phase duration and number of buzzes (attempts to capture prey) per dive increased with depth. In deep dives, dolphins were gliding for >50% of descent and adopted higher pitch angles both during descent and ascents, which was likely to reduce energetic cost of longer transits. This lower cost of transit was counteracted by the record of highest vertical swim speeds, rolling maneuvers and stroke rates at depth, together with a 4-fold increase in the inter-buzz interval, suggesting higher costs of pursuing and handling prey compared to shallow-water feeding. In spite of the increased capture effort at depth, dolphins managed to keep their estimated overall metabolic rate comparable across dive types. This indicates that adjustments in swimming modes may enable energy balance in deeper dives. If we think of the surface as a central place where divers return to breathe, our data match predictions that central place foragers should increase the number and likely quality of prey items at greater distances. These dolphins forage efficiently from near-shore benthic communities to depth-stratified scattering layers, enabling them to maximize their fitness.Publisher PDFPeer reviewe

    Energetic and physical limitations on the breaching performance of large whales

    Get PDF
    The considerable power needed for large whales to leap out of the water may represent the single most expensive burst maneuver found in nature. However, the mechanics and energetic costs associated with the breaching behaviors of large whales remain poorly understood. In this study we deployed whale-borne tags to measure the kinematics of breaching to test the hypothesis that these spectacular aerial displays are metabolically expensive. We found that breaching whales use variable underwater trajectories, and that high-emergence breaches are faster and require more energy than predatory lunges. The most expensive breaches approach the upper limits of vertebrate muscle performance, and the energetic cost of breaching is high enough that repeated breaching events may serve as honest signaling of body condition. Furthermore, the confluence of muscle contractile properties, hydrodynamics, and the high speeds required likely impose an upper limit to the body size and effectiveness of breaching whales
    corecore