17,579 research outputs found

    Weyl-type Fields with Geodesic Lines of Force

    Get PDF
    The static electrogravitational equations are studied and it is shown that an aligned type D metric which has a Weyl-type relationship between the gravitational and electric potential has shearfree geodesic lines of force. All such fields are then found and turn out to be the fields of a charged sphere, charged infinite rod and charged infinite plate. A further solution is also found with shearing geodesic lines of force. This new solution can have m>em>|e| or m<em<|e|, but cannot be in the Majumdar-Papapetrou class (in which m=em = |e|). It is algebraically general and has flat equipotential surfaces.Comment: 13 pages, RevTe

    Multi-agent system for dynamic manufacturing system optimization

    Get PDF
    This paper deals with the application of multi-agent system concept for optimization of dynamic uncertain process. These problems are known to have a computationally demanding objective function, which could turn to be infeasible when large problems are considered. Therefore, fast approximations to the objective function are required. This paper employs bundle of intelligent systems algorithms tied together in a multi-agent system. In order to demonstrate the system, a metal reheat furnace scheduling problem is adopted for highly demanded optimization problem. The proposed multi-agent approach has been evaluated for different settings of the reheat furnace scheduling problem. Particle Swarm Optimization, Genetic Algorithm with different classic and advanced versions: GA with chromosome differentiation, Age GA, and Sexual GA, and finally a Mimetic GA, which is based on combining the GA as a global optimizer and the PSO as a local optimizer. Experimentation has been performed to validate the multi-agent system on the reheat furnace scheduling problem

    Enabling superior m-health project success: a tricountry validation

    Get PDF
    The healthcare industry is facing increasing pressures to embrace new technologies that support greater patient access to, and higher quality of (but at the same time offer cost-effective), healthcare delivery. This pressure has spawned a plethora of initiatives to embrace the possibilities and potentials of technologies to develop and then diffuse new devices, new pharmaceutical products and support minimal invasive surgical techniques that will facilitate superior healthcare delivery

    Canonical General Relativity on a Null Surface with Coordinate and Gauge Fixing

    Get PDF
    We use the canonical formalism developed together with David Robinson to st= udy the Einstein equations on a null surface. Coordinate and gauge conditions = are introduced to fix the triad and the coordinates on the null surface. Toget= her with the previously found constraints, these form a sufficient number of second class constraints so that the phase space is reduced to one pair of canonically conjugate variables: \Ac_2\and\Sc^2. The formalism is related to both the Bondi-Sachs and the Newman-Penrose methods of studying the gravitational field at null infinity. Asymptotic solutions in the vicinity of null infinity which exclude logarithmic behavior require the connection to fall off like 1/r31/r^3 after the Minkowski limit. This, of course, gives the previous results of Bondi-Sachs and Newman-Penrose. Introducing terms which fall off more slowly leads to logarithmic behavior which leaves null infinity intact, allows for meaningful gravitational radiation, but the peeling theorem does not extend to Ψ1\Psi_1 in the terminology of Newman-Penrose. The conclusions are in agreement with those of Chrusciel, MacCallum, and Singleton. This work was begun as a preliminary study of a reduced phase space for quantization of general relativity.Comment: magnification set; pagination improved; 20 pages, plain te

    Exciton mediated one phonon resonant Raman scattering from one-dimensional systems

    Full text link
    We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering cross section from a one-dimensional (1D) system explicitly accounting for excitonic effects. The result should prove useful for analyzing the Raman resonance excitation profile lineshapes for a variety of 1D systems including carbon nanotubes and semiconductor quantum wires. We apply this formalism to a simple 1D model system to illustrate the similarities and differences between the free electron and correlated electron-hole theories.Comment: 10 pages, 6 figure

    A New Approach to Black Hole Microstates

    Get PDF
    If one encodes the gravitational degrees of freedom in an orthonormal frame field there is a very natural first order action one can write down (which in four dimensions is known as the Goldberg action). In this essay we will show that this action contains a boundary action for certain microscopic degrees of freedom living at the horizon of a black hole, and argue that these degrees of freedom hold great promise for explaining the microstates responsible for black hole entropy, in any number of spacetime dimensions. This approach faces many interesting challenges, both technical and conceptual.Comment: 6 pages, 0 figures, LaTeX; submitted to Mod. Phys. Lett. A.; this essay received "honorable mention" from the Gravity Research Foundation, 199

    Chirality dependence of the radial breathing phonon mode density in single wall carbon nanotubes

    Full text link
    A mass and spring model is used to calculate the phonon mode dispersion for single wall carbon nanotubes (SWNTs) of arbitrary chirality. The calculated dispersions are used to determine the chirality dependence of the radial breathing phonon mode (RBM) density. Van Hove singularities, usually discussed in the context of the single particle electronic excitation spectrum, are found in the RBM density of states with distinct qualitative differences for zig zag, armchair and chiral SWNTs. The influence the phonon mode density has on the two phonon resonant Raman scattering cross-section is discussed.Comment: 6 pages, 2 figures, submitted to Phys. Rev.

    Artificial Intelligence

    Get PDF
    Contains a report on a research project.M.I.T. Research Laboratory of ElectronicsM.I.T. Computation Cente

    Dynamics of electromagnetic waves in Kerr geometry

    Get PDF
    Here we are interested to study the spin-1 particle i.e., electro-magnetic wave in curved space-time, say around black hole. After separating the equations into radial and angular parts, writing them according to the black hole geometry, say, Kerr black hole we solve them analytically. Finally we produce complete solution of the spin-1 particles around a rotating black hole namely in Kerr geometry. Obviously there is coupling between spin of the electro-magnetic wave and that of black hole when particles propagate in that space-time. So the solution will be depending on that coupling strength. This solution may be useful to study different other problems where the analytical results are needed. Also the results may be useful in some astrophysical contexts.Comment: 15 Latex pages, 4 Figures; Accepted for publication in Classical and Quantum Gravit
    corecore