145 research outputs found

    Acoustics of early universe. I. Flat versus open universe models

    Get PDF
    A simple perturbation description unique for all signs of curvature, and based on the gauge-invariant formalisms is proposed to demonstrate that: (1) The density perturbations propagate in the flat radiation-dominated universe in exactly the same way as electromagnetic or gravitational waves propagate in the epoch of the matter domination. (2) In the open universe, sounds are dispersed by curvature. The space curvature defines the minimal frequency ωc\omega_{\rm c} below which the propagation of perturbations is forbidden. Gaussian acoustic fields are considered and the curvature imprint in the perturbations spectrum is discussed.Comment: The new version extended by 2 sections. Changes in notation. Some important comments adde

    Toward a Generative Modeling Analysis of CLAS Exclusive 2 Photoproduction

    Get PDF
    AI-supported algorithms, particularly generative models, have been successfully used in a variety of different contexts. This work employs a generative modeling approach to unfold detector effects specifically tailored for exclusive reactions that involve multiparticle final states. Our study demonstrates the preservation of correlations between kinematic variables in a multidimensional phase space. We perform a full closure test on two-pion photoproduction pseudodata generated with a realistic model in the kinematics of the Jefferson Lab CLAS g11 experiment. The overlap of different reaction mechanisms leading to the same final state associated with the CLAS detector’s nontrivial effects represents an ideal test case for AI-supported analysis. Uncertainty quantification performed via bootstrap provides an estimate of the systematic uncertainty associated with the procedure. The test demonstrates that GANs can reproduce highly correlated multidifferential cross sections even in the presence of detector-induced distortions in the training datasets, and provides a solid basis for applying the framework to real experimental data

    Concepts and characteristics of the 'COST Reference Microplasma Jet'

    Get PDF
    Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available

    Reproducibility of `COST Reference Microplasma Jets'

    Get PDF
    Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the `Biomedical Applications of Atmospheric Pressure Plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique

    Controlled production of atomic oxygen and nitrogen in a pulsed radio-frequency atmospheric-pressure plasma

    Get PDF
    International audienceRadio-frequency driven atmospheric pressure plasmas are efficient sources for the production of reactive species at ambient pressure and close to room temperature. Pulsing the radio-frequency power input provides additional control over species production and gas temperature. Here, we demonstrate the controlled production of highly reactive atomic oxygen and nitrogen in a pulsed radio-frequency ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn001.gif] 13.56 MHz) atmospheric-pressure plasma, operated with a small ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn002.gif] 0.1 % air-like admixture ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn003.gif] \rm N_2 / ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn004.gif] \rm O_2 at ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn005.gif] 4:1 ) through variations in the duty cycle. Absolute densities of atomic oxygen and nitrogen are determined through vacuum-ultraviolet absorption spectroscopy using the DESIRS beamline at the SOLEIL synchrotron coupled with a high resolution Fourier-transform spectrometer. The neutral-gas temperature is measured using nitrogen molecular optical emission spectroscopy. For a fixed applied-voltage amplitude (234?V), varying the pulse duty cycle from 10% to 100% at a fixed 10?kHz pulse frequency enables us to regulate the densities of atomic oxygen and nitrogen over the ranges of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn006.gif] (0.18±0.03) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn007.gif] (3.7±0.1)× 10^20 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn008.gif] \rm m^-3 and ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn009.gif] (0.2±0.06) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn010.gif] (4.4±0.8) × 10^19 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn011.gif] \rm m^-3 , respectively. The corresponding 11?K increase in the neutral-gas temperature with increased duty cycle, up to a maximum of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn012.gif] (314±4) K, is relatively small. This additional degree of control, achieved through regulation of the pulse duty cycle and time-averaged power, could be of particular interest for prospective biomedical applications

    Corrigendum : Concepts and characteristics of the 'COST Reference Microplasma Jet'

    Get PDF
    ABSTRACT: Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available

    Absolute ozone densities in a radio-frequency driven atmospheric pressure plasma using two-beam UV-LED absorption spectroscopy and numerical simulations

    Get PDF
    International audienceThe efficient generation of reactive oxygen species (ROS) in cold atmospheric pressure plasma jets (APPJs) is an increasingly important topic, e.g. for the treatment of temperature sensitive biological samples in the field of plasma medicine. A 13.56 MHz radio-frequency (rf) driven APPJ device operated with helium feed gas and small admixtures of oxygen (up to 1%), generating a homogeneous glow-mode plasma at low gas temperatures, was investigated. Absolute densities of ozone, one of the most prominent ROS, were measured across the 11 mm wide discharge channel by means of broadband absorption spectroscopy using the Hartley band centred at lambda = 255 nm. A two-beam setup with a reference beam in Mach--Zehnder configuration is employed for improved signal-to-noise ratio allowing high-sensitivity measurements in the investigated single-pass weak-absorbance regime. The results are correlated to gas temperature measurements, deduced from the rotational temperature of the N2 (C 3 {{{\Pi }}}u \to B 3 {{{\Pi }}}g , upsilo = 0 \to 2) optical emission from introduced air impurities. The observed opposing trends of both quantities as a function of rf power input and oxygen admixture are analysed and explained in terms of a zero-dimensional plasma-chemical kinetics simulation. It is found that the gas temperature as well as the densities of O and O2(b{}1{{{Sigma }}}g ) influence the absolute O3 densities when the rf power is varied
    corecore