629 research outputs found

    Unlocking biomarker discovery: Large scale application of aptamer proteomic technology for early detection of lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer deaths, because ~84% of cases are diagnosed at an advanced stage. Worldwide in 2008, ~1.5 million people were diagnosed and ~1.3 million died – a survival rate unchanged since 1960. However, patients diagnosed at an early stage and have surgery experience an 86% overall 5-year survival. New diagnostics are therefore needed to identify lung cancer at this stage. Here we present the first large scale clinical use of aptamers to discover blood protein biomarkers in disease with our breakthrough proteomic technology. This multi-center case-control study was conducted in archived samples from 1,326 subjects from four independent studies of non-small cell lung cancer (NSCLC) in long-term tobacco-exposed populations. We measured >800 proteins in 15uL of serum, identified 44 candidate biomarkers, and developed a 12-protein panel that distinguished NSCLC from controls with 91% sensitivity and 84% specificity in a training set and 89% sensitivity and 83% specificity in a blinded, independent verification set. Performance was similar for early and late stage NSCLC. This is a significant advance in proteomics in an area of high clinical need

    Nuclear translocation of cardiac G protein-Coupled Receptor kinase 5 downstream of select Gq-activating hypertrophic ligands is a calmodulin-dependent process.

    Get PDF
    G protein-Coupled Receptors (GPCRs) kinases (GRKs) play a crucial role in regulating cardiac hypertrophy. Recent data from our lab has shown that, following ventricular pressure overload, GRK5, a primary cardiac GRK, facilitates maladaptive myocyte growth via novel nuclear localization. In the nucleus, GRK5\u27s newly discovered kinase activity on histone deacetylase 5 induces hypertrophic gene transcription. The mechanisms governing the nuclear targeting of GRK5 are unknown. We report here that GRK5 nuclear accumulation is dependent on Ca(2+)/calmodulin (CaM) binding to a specific site within the amino terminus of GRK5 and this interaction occurs after selective activation of hypertrophic Gq-coupled receptors. Stimulation of myocytes with phenylephrine or angiotensinII causes GRK5 to leave the sarcolemmal membrane and accumulate in the nucleus, while the endothelin-1 does not cause nuclear GRK5 localization. A mutation within the amino-terminus of GRK5 negating CaM binding attenuates GRK5 movement from the sarcolemma to the nucleus and, importantly, overexpression of this mutant does not facilitate cardiac hypertrophy and related gene transcription in vitro and in vivo. Our data reveal that CaM binding to GRK5 is a physiologically relevant event that is absolutely required for nuclear GRK5 localization downstream of hypertrophic stimuli, thus facilitating GRK5-dependent regulation of maladaptive hypertrophy

    Pressure and Volume Limited Ventilation for the Ventilatory Management of Patients with Acute Lung Injury: A Systematic Review and Meta-Analysis

    Get PDF
    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life threatening clinical conditions seen in critically ill patients with diverse underlying illnesses. Lung injury may be perpetuated by ventilation strategies that do not limit lung volumes and airway pressures. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing pressure and volume-limited (PVL) ventilation strategies with more traditional mechanical ventilation in adults with ALI and ARDS.We searched Medline, EMBASE, HEALTHSTAR and CENTRAL, related articles on PubMed™, conference proceedings and bibliographies of identified articles for randomized trials comparing PVL ventilation with traditional approaches to ventilation in critically ill adults with ALI and ARDS. Two reviewers independently selected trials, assessed trial quality, and abstracted data. We identified ten trials (n = 1,749) meeting study inclusion criteria. Tidal volumes achieved in control groups were at the lower end of the traditional range of 10-15 mL/kg. We found a clinically important but borderline statistically significant reduction in hospital mortality with PVL [relative risk (RR) 0.84; 95% CI 0.70, 1.00; p = 0.05]. This reduction in risk was attenuated (RR 0.90; 95% CI 0.74, 1.09, p = 0.27) in a sensitivity analysis which excluded 2 trials that combined PVL with open-lung strategies and stopped early for benefit. We found no effect of PVL on barotrauma; however, use of paralytic agents increased significantly with PVL (RR 1.37; 95% CI, 1.04, 1.82; p = 0.03).This systematic review suggests that PVL strategies for mechanical ventilation in ALI and ARDS reduce mortality and are associated with increased use of paralytic agents

    Revans reversed: focusing on the positive for a change

    Get PDF
    The classical principles of action learning, based on the work of Revans, usually include working with problems as the core. This article aims, by contrast, to show how a recent project of change has incorporated principles of appreciative inquiry (AI) based on social constructionism and positive psychology into an action learning process involving a wide range of participants. The concern for problems is considered showing that the process of diagnosing a problem can reinforce a deficit orientation. The key ideas of AI are presented, highlighting the purpose of finding out what is going on in terms of what is working well, and in doing so, it becomes possible to build a picture of the strengths and virtues of what is happening at work. Based on findings from a recent project of culture shift in a design and production company, a process of positive action learning is considered

    Recommendations for the management of MPS IVA: systematic evidence- and consensus-based guidance.

    Get PDF
    IntroductionMucopolysaccharidosis (MPS) IVA or Morquio A syndrome is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of the N-acetylgalactosamine-6-sulfatase (GALNS) enzyme, which impairs lysosomal degradation of keratan sulphate and chondroitin-6-sulphate. The multiple clinical manifestations of MPS IVA present numerous challenges for management and necessitate the need for individualised treatment. Although treatment guidelines are available, the methodology used to develop this guidance has come under increased scrutiny. This programme was conducted to provide evidence-based, expert-agreed recommendations to optimise management of MPS IVA.MethodsTwenty six international healthcare professionals across multiple disciplines, with expertise in managing MPS IVA, and three patient advocates formed the Steering Committee (SC) and contributed to the development of this guidance. Representatives from six Patient Advocacy Groups (PAGs) were interviewed to gain insights on patient perspectives. A modified-Delphi methodology was used to demonstrate consensus among a wider group of healthcare professionals with experience managing patients with MPS IVA and the manuscript was evaluated against the validated Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument by three independent reviewers.ResultsA total of 87 guidance statements were developed covering five domains: (1) general management principles; (2) recommended routine monitoring and assessments; (3) disease-modifying interventions (enzyme replacement therapy [ERT] and haematopoietic stem cell transplantation [HSCT]); (4) interventions to support respiratory and sleep disorders; (5) anaesthetics and surgical interventions (including spinal, limb, ophthalmic, cardio-thoracic and ear-nose-throat [ENT] surgeries). Consensus was reached on all statements after two rounds of voting. The overall guideline AGREE II assessment score obtained for the development of the guidance was 5.3/7 (where 1 represents the lowest quality and 7 represents the highest quality of guidance).ConclusionThis manuscript provides evidence- and consensus-based recommendations for the management of patients with MPS IVA and is for use by healthcare professionals that manage the holistic care of patients with the intention to improve clinical- and patient-reported outcomes and enhance patient quality of life. It is recognised that the guidance provided represents a point in time and further research is required to address current knowledge and evidence gaps

    Activity-Based Protein Profiling Reveals That Cephalosporins Selectively Active on Non-replicating Mycobacterium tuberculosis Bind Multiple Protein Families and Spare Peptidoglycan Transpeptidases

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.As β-lactams are reconsidered for the treatment of tuberculosis (TB), their targets are assumed to be peptidoglycan transpeptidases, as verified by adduct formation and kinetic inhibition of Mycobacterium tuberculosis (Mtb) transpeptidases by carbapenems active against replicating Mtb. Here, we investigated the targets of recently described cephalosporins that are selectively active against non-replicating (NR) Mtb. NR-active cephalosporins failed to inhibit recombinant Mtb transpeptidases. Accordingly, we used alkyne analogs of NR-active cephalosporins to pull down potential targets through unbiased activity-based protein profiling and identified over 30 protein binders. None was a transpeptidase. Several of the target candidates are plausibly related to Mtb’s survival in an NR state. However, biochemical tests and studies of loss of function mutants did not identify a unique target that accounts for the bactericidal activity of these beta-lactams against NR Mtb. Instead, NR-active cephalosporins appear to kill Mtb by collective action on multiple targets. These results highlight the ability of these β-lactams to target diverse classes of proteins.NIH U19AI111143Milstein Program in Chemical Biology and Translational MedicineWilliam Randolph Hearst TrustWelch Foundation (A-0015

    Differential expression of transforming growth factor-β isoforms and receptors in experimental membranous nephropathy

    Get PDF
    Transforming growth factor-β1 stimulates matrix production by glomerular mesangial and epithelial cells. In membranous nephropathy (MN) overproduction of matrix by glomerular epithelial cells (GEC) is believed to be responsible for glomerular basement membrane thickening and spikes. We studied experimental MN in rats (passive Heymann nephritis, PHN) at 5, 10 and 30 days. PHN rats exhibited a marked increase in GEC immunostaining for TGF-β2 at all time points. TGF-β3 staining was increased at day 10 only, and TGF-β1 was unchanged. Glomerular mRNA for TGF-β2 and -β3 was increased by day 5 when urine protein increased, whereas TGF-β1 was not. TGF-β2 bioactivity was increased at day 5. There was also a marked increase in GEC immunostaining for TGF-β receptor type I (TβIR) and TGF-β receptor type II (TβIIR) at all time points in PHN. mRNA levels for both receptors increased at day 5. Increases in protein expression and mRNA levels for the TGF-β2 and -β3 isoforms, and TβIR and TβRII were prevented by complement depletion. We conclude that complement-mediated injury to the GEC in vivo is associated with the up-regulation of TGF-β2 and -β3 isoforms, an increase in TGF-β2 bioactivity, and an increase in TβRI and TβRII expression. This contrasts with changes in TGF-β1 reported in mesangial disease, suggesting that TGF-β2 and -β3 may be important in diseases of the GEC. The differential expression of TGF-β isoforms and receptors may be important determinants of the GEC response to injury
    • …
    corecore