10,102 research outputs found
Population structure, long-term connectivity, and effective size of mutton snapper (Lutjanus analis) in the Caribbean Sea and Florida Keys
Genetic structure and average long-term connectivity and
effective size of mutton snapper (Lutjanus analis) sampled from offshore localities in the U.S. Caribbean and the Florida Keys were assessed by using nuclear-encoded microsatellites and a fragment of mitochondrial DNA. No significant differences in allele, genotype (microsatellites), or haplotype (mtDNA) distributions were detected; tests of selective neutrality (mtDNA) were nonsignificant after Bonferroni correction. Heuristic
estimates of average long-term rate of migration (proportion of migrant individuals/generation) between geographically adjacent localities varied from 0.0033 to 0.0054, indicating that local subpopulations could respond
independently of environmental perturbations. Estimates of average longterm effective population sizes varied from 341 to 1066 and differed significantly among several of the localities. These results indicate that over time larval drift and interregional adult movement may not be sufficient to maintain population sustainability across the region and that there may be different demographic stocks at
some of the localities studied. The estimate of long-term effective population size at the locality offshore of St. Croix was below the minimum threshold size considered necessary to maintain the equilibrium between the loss of adaptive genetic variance from genetic drift and its replacement by mutation. Genetic variability in mutton snapper likely is maintained at the intraregional level by aggregate spawning and random mating of local populations. This feature is perhaps ironic in that aggregate spawning also renders mutton snapper especially vulnerable to overexploitation
Stable Branched Electron Flow
The pattern of branched electron flow revealed by scanning gate microscopy
shows the distribution of ballistic electron trajectories. The details of the
pattern are determined by the correlated potential of remote dopants with an
amplitude far below the Fermi energy. We find that the pattern persists even if
the electron density is significantly reduced such that the change in Fermi
energy exceeds the background potential amplitude. The branch pattern is robust
against changes in charge carrier density, but not against changes in the
background potential caused by additional illumination of the sample.Comment: Accepted for publication in New Journal of Physic
Very high two-dimensional hole gas mobilities in strained silicon germanium
We report on the growth by solid source MBE and characterization of remote doped Si/SiGe/Si two-dimensional hole gas structures. It has been found that by reducing the Ge composition to <=13% and limiting the thickness of the alloy layer, growth temperatures can be increased up to 950 °C for these structures while maintaining good structural integrity and planar interfaces. Record mobilities of 19 820 cm2 V−1 s−1 at 7 K were obtained in normal structures. Our calculations suggest that alloy scattering is not important in these structures and that interface roughness and interface charge scattering limit the low temperature mobilities
Evolution of Quantum Criticality in CeNi_{9-x}Cu_xGe_4
Crystal structure, specific heat, thermal expansion, magnetic susceptibility
and electrical resistivity studies of the heavy fermion system
CeNi_{9-x}Cu_xGe_4 (0 <= x <= 1) reveal a continuous tuning of the ground state
by Ni/Cu substitution from an effectively fourfold degenerate non-magnetic
Kondo ground state of CeNi_9Ge_4 (with pronounced non-Fermi-liquid features)
towards a magnetically ordered, effectively twofold degenerate ground state in
CeNi_8CuGe_4 with T_N = 175 +- 5 mK. Quantum critical behavior, C/T ~ \chi ~
-ln(T), is observed for x about 0.4. Hitherto, CeNi_{9-x}Cu_xGe_4 represents
the first system where a substitution-driven quantum phase transition is
connected not only with changes of the relative strength of Kondo effect and
RKKY interaction, but also with a reduction of the effective crystal field
ground state degeneracy.Comment: 15 pages, 9 figure
Effect of age, female mating status and density on the banana weevil response to aggregation pheromone
The banana ( Musa spp.) weevil ( Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a major pest in East Africa causing yield losses of up to 14 metric tonnes per hectare annually. Laboratory and field experiments were conducted to determine whether the response of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) to its aggregation pheromone was influenced by age, female mating status and weevil density. Laboratory bioassays were conducted using a double pitfall olfactometer, while a bucket pitfall trap was used in field experiments. There was no significant (P>0.05) difference in response to pheromone between immature and mature weevils (males and females) in laboratory bioassays. Forty-day-old weevils had a stronger response to the pheromone than 10-day-old ones under field conditions. The response of unmated weevils to the pheromone was stronger than that of mated weevils, both in the laboratory and field. The percentage of unmated and mated weevils recaptured from 0 and 3 m were similar but significantly different from 6 m way from the pheromone baited trap. The response of the weevils to the pheromone was not significantly (P>0.05) influenced by its previous density
Effect of mulching on banana weevil movement relative to pheromone traps
Banana weevil (Cosmopolites sordidus) is a major pest in East Africa causing yield losses of up to 14 metric tonnes per hectare annually. A study was conducted in Uganda to determine the effect of mulching on banana (Musa spp. L.) weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), movement relative to pheromone-baited traps. Three treatments were used to create different mulching levels: banana without mulch (control), banana with thin mulch (< 6 cm thick), and banana with thick mulch (15 cm thick). Pheromone trapswere placed in the plots and weevil trap catches were monitored. Weevil catches in pheromone traps from both mulched and unmulched plots were generally similar. The mulching level had no effect on the ratio of males to females recaptured. The numbers of weevils captured in pheromone traps were lower than in the wet season andwas not influenced by mulch levels. Mulching levels had a limited influence on the numbers of weevils recaptured from different directions. The results generally indicate that mulching has no effect on weevil catches in pheromone traps
Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation
We self-consistently derive the magnetic energy and relative magnetic
helicity budgets of a three-dimensional linear force-free magnetic structure
rooted in a lower boundary plane. For the potential magnetic energy we derive a
general expression that gives results practically equivalent to those of the
magnetic Virial theorem. All magnetic energy and helicity budgets are
formulated in terms of surface integrals applied to the lower boundary, thus
avoiding computationally intensive three-dimensional magnetic field
extrapolations. We analytically and numerically connect our derivations with
classical expressions for the magnetic energy and helicity, thus presenting a
so-far lacking unified treatment of the energy/helicity budgets in the
constant-alpha approximation. Applying our derivations to photospheric vector
magnetograms of an eruptive and a noneruptive solar active regions, we find
that the most profound quantitative difference between these regions lies in
the estimated free magnetic energy and relative magnetic helicity budgets. If
this result is verified with a large number of active regions, it will advance
our understanding of solar eruptive phenomena. We also find that the
constant-alpha approximation gives rise to large uncertainties in the
calculation of the free magnetic energy and the relative magnetic helicity.
Therefore, care must be exercised when this approximation is applied to
photospheric magnetic field observations. Despite its shortcomings, the
constant-alpha approximation is adopted here because this study will form the
basis of a comprehensive nonlinear force-free description of the energetics and
helicity in the active-region solar corona, which is our ultimate objective.Comment: 44 pages, 8 figures, 2 tables. The Astrophysical Journal, in pres
Expert chess memory: Revisiting the chunking hypothesis
After reviewing the relevant theory on chess expertise, this paper re-examines experimentally the finding of Chase and Simon (1973a) that the differences in ability of chess players at different skill levels to copy and to recall positions are attributable to the experts' storage of thousands of chunks (patterned clusters of pieces) in long-term memory. Despite important differences in the experimental apparatus, the data of the present experiments regarding latencies and chess relations between successively placed pieces are highly correlated with those of Chase and Simon. We conclude that the 2-second inter-chunk interval used to define chunk boundaries is robust, and that chunks have psychological reality. We discuss the possible reasons why Masters in our new study used substantially larger chunks than the Master of the 1973 study, and extend the chunking theory to take account of the evidence for large retrieval structures (templates) in long-term memory
Association of Air Pollution with Increased Incidence of Ventricular Tachyarrhythmias Recorded by Implanted Cardioverter Defibrillators
Epidemiologic studies have demonstrated a consistent link between sudden cardiac deaths and particulate air pollution. We used implanted cardioverter defibrillator (ICD) records of ventricular tachyarrhythmias to assess the role of air pollution as a trigger of these potentially life-threatening events. The study cohort consisted of 203 cardiac patients with ICD devices in the Boston metropolitan area who were followed for an average of 3.1 years between 1995 and 2002. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured on almost all days, and black carbon, sulfate, and particle number on a subset of days. Date, time, and intracardiac electrograms of ICD-detected arrhythmias were downloaded at the patients’ regular follow-up visits (about every 3 months). Ventricular tachyarrhythmias were identified by electrophysiologist review. Risk of ventricular arrhythmias associated with air pollution was estimated with logistic regression, adjusting for season, temperature, relative humidity, day of the week, patient, and a recent prior arrhythmia. We found increased risks of ventricular arrhythmias associated with 2-day mean exposure for all air pollutants considered, although these associations were not statistically significant. We found statistically significant associations between air pollution and ventricular arrhythmias for episodes within 3 days of a previous arrhythmia. The associations of ventricular tachyarrhythmias with fine particle mass, carbon monoxide, nitrogen dioxide, and black carbon suggest a link with motor vehicle pollutants. The associations with sulfate suggest a link with stationary fossil fuel combustion sources
- …