701 research outputs found

    Constraint handling strategies in Genetic Algorithms application to optimal batch plant design

    Get PDF
    Optimal batch plant design is a recurrent issue in Process Engineering, which can be formulated as a Mixed Integer Non-Linear Programming(MINLP) optimisation problem involving specific constraints, which can be, typically, the respect of a time horizon for the synthesis of various products. Genetic Algorithms constitute a common option for the solution of these problems, but their basic operating mode is not always wellsuited to any kind of constraint treatment: if those cannot be integrated in variable encoding or accounted for through adapted genetic operators, their handling turns to be a thorny issue. The point of this study is thus to test a few constraint handling techniques on a mid-size example in order to determine which one is the best fitted, in the framework of one particular problem formulation. The investigated methods are the elimination of infeasible individuals, the use of a penalty term added in the minimized criterion, the relaxation of the discrete variables upper bounds, dominancebased tournaments and, finally, a multiobjective strategy. The numerical computations, analysed in terms of result quality and of computational time, show the superiority of elimination technique for the former criterion only when the latter one does not become a bottleneck. Besides, when the problem complexity makes the random location of feasible space too difficult, a single tournament technique proves to be the most efficient one

    Irreversible electroporation: evolution of a laboratory technique in interventional oncology

    Get PDF
    Electroporation involves applying electric field pulses to cells, leading to the alteration or destruction of cell membranes. Irreversible electroporation (IRE) creates permanent defects in cell membranes and induces cell death. By directly targeting IRE to tumors, percutaneous nonthermal ablation is possible. The history of IRE, evolution of concepts, theory, biological applications, and clinical data regarding its safety and efficacy are discussed

    Supersymmetric solutions of PT-/non-PT-symmetric and non-Hermitian Screened Coulomb potential via Hamiltonian hierarchy inspired variational method

    Get PDF
    The supersymmetric solutions of PT-symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the Schrodinger equation for the Exponential-Cosine Screened Coulomb potential. The Hamiltonian hierarchy inspired variational method is used to obtain the approximate energy eigenvalues and corresponding wave functions.Comment: 13 page

    BN domains included into carbon nanotubes: role of interface

    Full text link
    We present a density functional theory study on the shape and arrangement of small BN domains embedded into single-walled carbon nanotubes. We show a strong tendency for the BN hexagons formation at the simultaneous inclusion of B and N atoms within the walls of carbon nanotubes. The work emphasizes the importance of a correct description of the BN-C frontier. We suggest that BN-C interface will be formed preferentially with the participation of N-C bonds. Thus, we propose a new way of stabilizing the small BN inclusions through the formation of nitrogen terminated borders. The comparison between the obtained results and the available experimental data on formation of BN plackets within the single walled carbon nanotubes is presented. The mirror situation of inclusion of carbon plackets within single walled BN nanotubes is considered within the proposed formalism. Finally, we show that the inclusion of small BN plackets inside the CNTs strongly affects the electronic character of the initial systems, opening a band gap. The nitrogen excess in the BN plackets introduces donor states in the band gap and it might thus result in a promising way for n-doping single walled carbon nanotubes

    Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation

    Get PDF
    Pressure-driven, superfast organic solvent filtration membranes have significant practical applications. An excellent filtration membrane should exhibit high selectivity and permeation in aqueous and organic solvents to meet increasing industrial demand. Here, we report an amino functionalized boron nitride (FBN) based filtration membrane with a nanochannel network for molecular separation and permeation. This membrane is highly stable in water and in several organic solvents and shows high transport performance for solvents depending on the membranes' thickness. In addition, the FBN membrane is applicable for solute screening in water as well as in organic solvents. More importantly, the FBN membranes are very stable in acidic, alkaline and oxidative media for up to one month. The fast-flow rate and good separation performance of the FBN membranes can be attributed to their stable networks of nanochannels and thin laminar structure, which provide the membranes with beneficial properties for practical separation and purification processes
    corecore