105 research outputs found

    Pharmacological manipulation of GABA-driven activity in ovo disrupts the development of dendritic morphology but not the maturation of spinal cord network activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the adult nervous system, GABA acts as a major inhibitory neurotransmitter; however, at early stages of neurodevelopment, GABA receptor activation leads to membrane depolarization and accumulation of [Ca<sup>2+</sup>]<sub>i</sub>. The role of excitatory GABAergic neurotransmission in the development of the nervous system is not fully understood. In this study, we investigated the role of excitatory GABA-driven activity in regulating the dendritic morphology and network function in the developing chicken spinal cord.</p> <p>Results</p> <p>Both bicuculline, a GABA receptor antagonist, and muscimol, a GABA agonist, inhibit the generation of spontaneous network activity in the isolated spinal cord at E8 or E10, indicating that altering GABA receptor activation disrupts the generation of spontaneous network activity in the chicken spinal cord. Treatment of chicken embryos with bicuculline or muscimol between E5 and E8 (or between E8 and E10), inhibits the dendritic outgrowth of motoneurons when compared to vehicle-treated embryos. The inhibitory effect of bicuculline or muscimol on the dendritic morphology of motoneurons was likely due to inhibition of GABA-driven network activity since a similar effect was also observed following reduction of network activity by Kir2.1 overexpression in the spinal cord. The inhibitory effect of bicuculline or muscimol was not caused by an adverse effect on cell survival. Surprisingly, chronic treatment of chicken embryos with bicuculline or muscimol has no effect on the shape and duration of the episodes of spontaneous activity, suggesting that maturation of network activity is not altered by disruption of the dendritic outgrowth of motoneurons.</p> <p>Conclusions</p> <p>Taken together, these findings indicate that excitatory GABA receptor activation regulates the maturation of dendritic morphology in the developing spinal cord by an activity-dependent mechanism. However, inhibition of dendritic outgrowth caused by disruption of GABA-driven activity does not alter the maturation of spontaneous electrical activity generated by spinal cord networks, suggesting that compensatory mechanisms can reverse any adverse effect of dendritic morphology on network function.</p

    Changes in axonal excitability of primary sensory afferents with general anaesthesia in humans

    Full text link
    BACKGROUND: Intraoperative monitoring of neuronal function is important in a variety of surgeries. The type of general anaesthetic used can affect the interpretation and quality of such recordings. Although the principal effects of general anaesthetics are synaptically mediated, the extent to which they affect excitability of the peripheral afferent nervous system is unclear. METHODS: Forty subjects were randomized in a stratified manner into two groups, anaesthetized with either propofol or sevoflurane. The threshold tracking technique (QTRAC(®)) was used to measure nerve excitability parameters of the sensory action potential of the median nerve before and after induction of general anaesthesia. RESULTS: Several parameters of peripheral sensory afferent nerve excitability changed after induction of general anaesthesia, which were similar for both propofol and sevoflurane. The maximum amplitude of the sensory nerve action potential decreased in both groups (propofol: 25.3%; sevoflurane: 29.5%; both P<0.01). The relative refractory period [mean (sd)] also decreased similarly in both groups [propofol: -0.6 (0.7) ms; sevoflurane: -0.3 (0.5) ms; both P<0.01]. Skin temperature at the stimulation site increased significantly in both groups [propofol: +1.2 (1.0)°C; sevoflurane: +1.7 (1.4)°C; both P<0.01]. CONCLUSIONS: Small changes in excitability of primary sensory afferents after the induction of anaesthesia with propofol or sevoflurane were detected. These effects, which were non-specific and are possibly explained by changes observed in temperature, demonstrate possible anaesthetic effects on intraoperative neuromonitoring

    Spontaneous neural synchrony links intrinsic spinal sensory and motor networks during unconsciousness

    Get PDF
    Non-random functional connectivity during unconsciousness is a defining feature of supraspinal networks. However, its generalizability to intrinsic spinal networks remains incompletely understood. Previously, Barry et al., 2014 used fMRI to reveal bilateral resting state functional connectivity within sensory-dominant and, separately, motor-dominant regions of the spinal cord. Here, we record spike trains from large populations of spinal interneurons in vivo in rats and demonstrate that spontaneous functional connectivity also links sensory- and motor-dominant regions during unconsciousness. The spatiotemporal patterns of connectivity could not be explained by latent afferent activity or by populations of interconnected neurons spiking randomly. We also document connection latencies compatible with mono- and disynaptic interactions and putative excitatory and inhibitory connections. The observed activity is consistent with the hypothesis that salient, experience-dependent patterns of neural transmission introduced during behavior or by injury/disease are reactivated during unconsciousness. Such a spinal replay mechanism could shape circuit-level connectivity and ultimately behavior

    Pirt, a TRPV1 Modulator, Is Required for Histamine-Dependent and -Independent Itch

    Get PDF
    Itch, or pruritus, is an important clinical problem whose molecular basis has yet to be understood. Recent work has begun to identify genes that contribute to detecting itch at the molecular level. Here we show that Pirt, known to play a vital part in sensing pain through modulation of the transient receptor potential vanilloid 1 (TRPV1) channel, is also necessary for proper itch sensation. Pirt−/− mice exhibit deficits in cellular and behavioral responses to various itch-inducing compounds, or pruritogens. Pirt contributes to both histaminergic and nonhistaminergic itch and, crucially, is involved in forms of itch that are both TRPV1-dependent and -independent. Our findings demonstrate that the function of Pirt extends beyond nociception via TRPV1 regulation to its role as a critical component in several itch signaling pathways

    Neurophysiological Mechanisms of Startle-Reflexes

    No full text
    Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
    • …
    corecore