12 research outputs found

    Sub-nanoscale free volume and local elastic modulus of chitosan-carbon nanotube biomimetic nanocomposite scaffold-materials

    No full text
    Future progress in materials for tissue engineering and 3D cell cultures applications requires control of two key physical properties: nanoscale mechanical properties and mass transport. These requirements remain uncontrolled partly due to a lack of physical parameters and quantitative measurements. Using chitosan scaffolds as a model system in close-to-physiological conditions and a combination of experimental techniques and theory, we link structure with local nanomechanical properties. Additionally we introduce a parameter, the free volume, to predict variations in transport properties. By fabricating nanocomposites with single walled carbon nanotubes (SWNTs) we are able to test our approach: incorporation of acid-treated, soluble, ∼80 nm SWNTs in a chitosan matrix leads to a 2 fold increase in mean local elastic modulus and a decrease of 3% of the free volume available for oxygen diffusion. Inclusion of hydrophobic, ∼800 nm SWNTs leads to a 100 fold increase of elastic modulus and doubles the voids percentage available for the transport of glucose

    Magnetization reversal in circular vortex dots of small radius

    No full text
    We present a detailed study of the magnetic behavior of Permalloy (NiFe alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.This work has been primarily funded by the Spanish Government under Project MAT2014-55049-C2-R and partially by the Basque Government under the Micro4Fab Project (KK-2016/00030). K. G. acknowledges support by IKERBASQUE (the Basque Foundation for Science). The work of K. G. was partially supported by Spanish MINECO grants MAT2013-47078-C2-1-P and FIS2016-78591-C3-3-R
    corecore