106 research outputs found

    Spin susceptibility and polarization field in a dilute two-dimensional electron system in (111) silicon

    Full text link
    We find that the polarization field, B_chi, obtained by scaling the weak-parallel-field magnetoresistance at different electron densities in a dilute two-dimensional electron system in (111) silicon, corresponds to the spin susceptibility that grows strongly at low densities. The polarization field, B_sat, determined by resistance saturation, turns out to deviate to lower values than B_chi with increasing electron density, which can be explained by filling of the upper electron subbands in the fully spin-polarized regime

    The record of human impact in the sedimentary record at Portus, the harbor of ancient Rome

    Get PDF
    International audienceThe present study focuses on the analysis of palaeo-pollutions and the sedimentary environments in which they were trapped in the Roman Portus harbor. Portus received heavy-metals pollution both from local foundries, fulling, and tanning and from distal upstream development in Rome. Rome wastewaters, which accounted for up to 3 percent of the total Tiber discharge, were forwarded to Portus through a network of canals (Canale Romano and Canale Trasverso) connecting the river to the sea. In this manner, harbor basins accumulated both allochthonous and autochthonous heavy metals. We determined major and trace element concentrations as well as Pb isotope compositions in a high-resolution set of samples from sediment cores recovered in the Portus area. Principal component analysis of elements that are less prone to the influence of human activities, such as Ca, Mg, Mn, Zr, K, Al, Ti, Na, Sr, and Mn, was used in conjunction with metallic elements to break down the sedimentary load into local and regional components. The record of Pb concentrations and isotopic compositions reveals an overall general trend on which other signatures are superimposed. The geochemical background of the Tiber catchment (24.7-26.2 ppm Pb and 206 Pb/ 207 Pb ~ 1.198) represents geologically young (model age Tm <50 Ma) Pb derived from natural runoff over young sediments and volcanics in the Latium. From the 1 st century AD to the end of the roman period, the harbor regime evolved from a dominant fluvial (enriched in Al, Ti, Mg, K, and Zr) to a more marine influence (high Ca/Mg, Na/Al, Sr, and CaCO3) in the upper part of the harbor unit. "Imperial" Pb (90.5-35.4 ppm Pb and 20

    Cyclotron resonance of extremely conductive 2D holes in high Ge content strained heterostructures

    Get PDF
    Cyclotron resonance has been observed in steady and pulsed magnetic fields from high conductivity holes in Ge quantum wells. The resonance positions, splittings and linewidths are compared to calculations of the hole Landau levels

    Tuning the magnetic ground state of a novel tetranuclear Nickel(II) molecular complex by high magnetic fields

    Full text link
    Electron spin resonance and magnetization data in magnetic fields up to 55 T of a novel multicenter paramagnetic molecular complex [L_2Ni_4(N_3)(O_2C Ada)_4](Cl O_4) are reported. In this compound, four Ni centers each having a spin S = 1 are coupled in a single molecule via bridging ligands (including a \mu_4-azide) which provide paths for magnetic exchange. Analysis of the frequency and temperature dependence of the ESR signals yields the relevant parameters of the spin Hamiltonian, in particular the single ion anisotropy gap and the g factor, which enables the calculation of the complex energy spectrum of the spin states in a magnetic field. The experimental results give compelling evidence for tuning the ground state of the molecule by magnetic field from a nonmagnetic state at small fields to a magnetic one in strong fields owing to the spin level crossing at a field of ~25 T.Comment: revised version, accepted for publication in Physical Review

    Geochemical investigation of a sediment core from the Trajan basin at Portus, the harbor of ancient Rome

    Get PDF
    International audiencea journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t From the 1st century AD and for the duration of the Roman Empire, the Portus complex was the main harbor of Rome. Its location on the Tiber delta next to the Tyrrhenian Sea produced rapid environmental changes that, together with historical vicissitudes, largely determined the fate of the harbor. We have assembled data on the mineralogy, sedimentology, geochemistry, and ostracod populations of a sediment core drilled in the access channel of the hexagonal basin of Trajan, with the expectation that such a combined data set will shed new light on how the connections of the inland Trajan basin with the Tiber river, the earlier Claudius harbor on the nearby shoreline, and the sea evolved through the centuries. The data define four distinct periods which geochemistry characterizes by different conditions of salinity and oxygenation. These in turn can be related to historical periods and events by means of 1

    Antiferromagnetic Dimers of Ni(II) in the S=1 Spin-Ladder Na_2Ni_2(C_2O_4)_3(H_2O)_2

    Full text link
    We report the synthesis, crystal structure and magnetic properties of the S=1 2-leg spin-ladder compound Na_2Ni_2(C_2O_4)_3(H_2O)_2. The magnetic properties were examined by magnetic susceptibility and pulsed high field magnetization measurements. The magnetic excitations have been measured in high field high frequency ESR. Although the Ni(II) ions form structurally a 2-leg ladder, an isolated dimer model consistently describes the observations very well. The analysis of the temperature dependent magnetization data leads to a magnetic exchange constant of J=43 K along the rungs of the ladder and an average value of the g-factor of 2.25. From the ESR measurements, we determined the single ion anisotropy to D=11.5 K. The validity of the isolated dimer model is supported by Quantum Monte Carlo calculations, performed for several ratios of interdimer and intradimer magnetic exchange and taking into account the experimentally determined single ion anisotropy. The results can be understood in terms of the different coordination and superexchange angles of the oxalate ligands along the rungs and legs of the 2-leg spin ladder.Comment: 8 pages, 10 figure

    Transport and magnetic properties of LT annealed Ga1-xMnxAs

    Full text link
    We present the results of low temperature (LT) annealing studies of Ga1-xMnxAs epilayers grown by low temperature molecular beam epitaxy in a wide range of Mn concentrations (0.01<x<0.084). Transport measurements in low and high magnetic fields as well as SQUID measurements were performed on a wide range of samples, serving to establish optimal conditions of annealing. Optimal annealing procedure succeeded in the Curie temperatures higher than 110K. The highest value of Curie temperature estimated from the maximum in the temperature dependence of zero-field resistivity (Tr) was 127K. It is generally observed that annealing leads to large changes in the magnetic and transport properties of GaMnAs in the very narrow range of annealing temperature close to the growth temperature.Comment: XXXI International School on the Physics of Semiconducting Compounds Jaszowiec 2002, will be published in Acta Physica Polonica

    Quantum Size Effect transition in percolating nanocomposite films

    Full text link
    We report on unique electronic properties in Fe-SiO2 nanocomposite thin films in the vicinity of the percolation threshold. The electronic transport is dominated by quantum corrections to the metallic conduction of the Infinite Cluster (IC). At low temperature, mesoscopic effects revealed on the conductivity, Hall effect experiments and low frequency electrical noise (random telegraph noise and 1/f noise) strongly support the existence of a temperature-induced Quantum Size Effect (QSE) transition in the metallic conduction path. Below a critical temperature related to the geometrical constriction sizes of the IC, the electronic conductivity is mainly governed by active tunnel conductance across barriers in the metallic network. The high 1/f noise level and the random telegraph noise are consistently explained by random potential modulation of the barriers transmittance due to local Coulomb charges. Our results provide evidence that a lowering of the temperature is somehow equivalent to a decrease of the metal fraction in the vicinity of the percolation limit.Comment: 21 pages, 8 figure
    • …
    corecore