972 research outputs found
Direct estimation of electron density in the Orion Bar PDR from mm-wave carbon recombination lines
A significant fraction of the molecular gas in star-forming regions is
irradiated by stellar UV photons. In these environments, the electron density
(n_e) plays a critical role in the gas dynamics, chemistry, and collisional
excitation of certain molecules. We determine n_e in the prototypical strongly
irradiated photodissociation region (PDR), the Orion Bar, from the detection of
new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR
[13CII] hyperfine line observations. We detect 12 mmCRLs (including alpha,
beta, and gamma transitions) observed with the IRAM 30m telescope, at ~25''
angular resolution, toward the H/H2 dissociation front (DF) of the Bar. We also
present a mmCRL emission cut across the PDR. These lines trace the C+/C/CO gas
transition layer. As the much lower frequency carbon radio recombination lines,
mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent HII
region. This is readily seen from their narrow line profiles (dv=2.6+/-0.4
km/s) and line peak LSR velocities (v_LSR=+10.7+/-0.2 km/s). Optically thin
[13CII] hyperfine lines and molecular lines - emitted close to the DF by trace
species such as reactive ions CO+ and HOC+ - show the same line profiles. We
use non-LTE excitation models of [13CII] and mmCRLs and derive n_e = 60-100
cm^-3 and T_e = 500-600 K toward the DF. The inferred electron densities are
high, up to an order of magnitude higher than previously thought. They provide
a lower limit to the gas thermal pressure at the PDR edge without using
molecular tracers. We obtain P_th > (2-4)x10^8 cm^-3 K assuming that the
electron abundance is equal or lower than the gas-phase elemental abundance of
carbon. Such elevated thermal pressures leave little room for magnetic pressure
support and agree with a scenario in which the PDR photoevaporates.Comment: Accepted for publication in A&A Letters (includes language editor
corrections
Herschel observations of the Sgr B2 cores: Hydrides, warm CO, and cold dust
Sagittarius B2 (Sgr B2) is one of the most massive and luminous star-forming
regions in the Galaxy and shows chemical and physical conditions similar to
those in distant extragalactic starbursts. We present large-scale far-IR/submm
photometric images and spectroscopic maps taken with the PACS and SPIRE
instruments onboard Herschel. The spectra towards the Sgr B2 star-forming
cores, B2(M) and B2(N), are characterized by strong CO line emission, emission
lines from high-density tracers (HCN, HCO+, and H2S), [N II] 205 um emission
from ionized gas, and absorption lines from hydride molecules (OH+, H2O+, H2O,
CH+, CH, SH+, HF, NH, NH2, and NH3). The rotational population diagrams of CO
suggest the presence of two gas temperature components: an extended warm
component, which is associated with the extended envelope, and a hotter
component, which is seen towards the B2(M) and B2(N) cores. As observed in
other Galactic Center clouds, the gas temperatures are significantly higher
than the dust temperatures inferred from photometric images. We determined
far-IR and total dust masses in the cores. Non-local thermodynamic equilibrium
models of the CO excitation were used to constrain the averaged gas density in
the cores. A uniform luminosity ratio is measured along the extended envelope,
suggesting that the same mechanism dominates the heating of the molecular gas
at large scales. The detection of high-density molecular tracers and of strong
[N II] 205 um line emission towards the cores suggests that their morphology
must be clumpy to allow UV radiation to escape from the inner HII regions.
Together with shocks, the strong UV radiation field is likely responsible for
the heating of the hot CO component. At larger scales, photodissociation
regions models can explain both the observed CO line ratios and the uniform
L(CO)/LFIR luminosity ratios
The Abundance of SiC2 in Carbon Star Envelopes: Evidence that SiC2 is a gas-phase precursor of SiC dust
Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich
AGB stars. However, the main gas-phase precursors leading to the formation of
SiC dust have not yet been identified. The most obvious candidates among the
molecules containing an Si--C bond detected in C-rich AGB stars are SiC2, SiC,
and Si2C. We aim to study how widespread and abundant SiC2, SiC, and Si2C are
in envelopes around C-rich AGB stars and whether or not these species play an
active role as gas-phase precursors of silicon carbide dust in the ejecta of
carbon stars. We carried out sensitive observations with the IRAM 30m telescope
of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC,
and Si2C in the 2 mm band. We performed non-LTE excitation and radiative
transfer calculations based on the LVG method to model the observed lines of
SiC2 and to derive SiC2 fractional abundances in the observed envelopes. We
detect SiC2 in most of the sources, SiC in about half of them, and do not
detect Si2C in any source, at the exception of IRC +10216. Most of these
detections are reported for the first time in this work. We find a positive
correlation between the SiC and SiC2 line emission, which suggests that both
species are chemically linked, the SiC radical probably being the
photodissociation product of SiC2 in the external layer of the envelope. We
find a clear trend in which the denser the envelope, the less abundant SiC2 is.
The observed trend is interpreted as an evidence of efficient incorporation of
SiC2 onto dust grains, a process which is favored at high densities owing to
the higher rate at which collisions between particles take place. The observed
behavior of a decline in the SiC2 abundance with increasing density strongly
suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes
around carbon stars.Comment: Published in A&A. 16 pages and 10 figure
Star Formation Near Photodissociation Regions: Detection of a Peculiar Protostar Near Ced 201
We present the detection and characterization of a peculiar low-mass
protostar (IRAS 22129+7000) located ~0.4 pc from Ced 201 Photodissociation
Region (PDR) and ~0.2 pc from the HH450 jet. The cold circumstellar envelope
surrounding the object has been mapped through its 1.2 mm dust continuum
emission with IRAM-30m/MAMBO. The deeply embedded protostar is clearly detected
with Spitzer/MIPS (70 um), IRS (20-35 um) and IRAC (4.5, 5.8, and 8 um) but
also in the K_s band (2.15 um). Given the large "near- and mid-IR excess" in
its spectral energy distribution, but large submillimeter-to-bolometric
luminosity ratio (~2%), IRAS 22129+7000 must be a transition Class 0/I source
and/or a multiple stellar system. Targeted observations of several molecular
lines from CO, 13CO, C18O, HCO+ and DCO+ have been obtained. The presence of a
collimated molecular outflow mapped with the CSO telescope in the CO J=3-2 line
suggests that the protostar/disk system is still accreting material from its
natal envelope. Indeed, optically thick line profiles from high density tracers
such as HCO+ J=1-0 show a red-shifted-absorption asymmetry reminiscent of
inward motions. We construct a preliminary physical model of the circumstellar
envelope (including radial density and temperature gradients, velocity field
and turbulence) that reproduces the observed line profiles and estimates the
ionization fraction. The presence of both mechanical and (non-ionizing)
FUV-radiative input makes the region an interesting case to study triggered
star formation
Velocity-resolved [CII] emission and [CII]/FIR Mapping along Orion with Herschel
We present the first 7.5'x11.5' velocity-resolved map of the [CII]158um line
toward the Orion molecular cloud-1 (OMC-1) taken with the Herschel/HIFI
instrument. In combination with far-infrared (FIR) photometric images and
velocity-resolved maps of the H41alpha hydrogen recombination and CO J=2-1
lines, this data set provides an unprecedented view of the intricate
small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the
radiative feedback from massive stars. The main contribution to the [CII]
luminosity (~85%) is from the extended, FUV-illuminated face of the cloud
G_0>500, n_H>5x10^3 cm^-3) and from dense PDRs (G_0~10^4, n_H~10^5 cm^-3) at
the interface between OMC-1 and the HII region surrounding the Trapezium
cluster. Around 15% of the [CII] emission arises from a different gas component
without CO counterpart. The [CII] excitation, PDR gas turbulence, line opacity
(from [13CII]) and role of the geometry of the illuminating stars with respect
to the cloud are investigated. We construct maps of the [CII]/FIR and FIR/M_Gas
ratios and show that [CII]/FIR decreases from the extended cloud component
(10^-2-10^-3) to the more opaque star-forming cores (10^-3-10^-4). The lowest
values are reminiscent of the "[CII] deficit" seen in local ultra-luminous IR
galaxies hosting vigorous star formation. Spatial correlation analysis shows
that the decreasing [CII]/FIR ratio correlates better with the column density
of dust through the molecular cloud than with FIR/M_Gas. We conclude that the
[CII] emitting column relative to the total dust column along each line of
sight is responsible for the observed [CII]/FIR variations through the cloud.Comment: 21 pages, 17 figures. Accepted for publication in the Astrophysical
Journal (2015 August 12). Figures 2, 6 and 7 are bitmapped to lower
resolution. This is version 2 after minor editorial changes. Notes added
after proofs include
Deuteration around the ultracompact HII region Mon R2
The massive star-forming region Mon R2 hosts the closest ultra-compact HII
region that can be spatially resolved with current single-dish telescopes. We
used the IRAM-30m telescope to carry out an unbiased spectral survey toward two
important positions (namely IF and MP2), in order to studying the chemistry of
deuterated molecules toward Mon R2. We found a rich chemistry of deuterated
species at both positions, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO,
NH2D, and N2D+ and their corresponding hydrogenated species and isotopologs.
Our high spectral resolution observations allowed us to resolve three velocity
components: the component at 10 km/s is detected at both positions and seems
associated with the layer most exposed to the UV radiation from IRS 1; the
component at 12 km/s is found toward the IF position and seems related to the
molecular gas; finally, a component at 8.5 km/s is only detected toward the MP2
position, most likely related to a low-UV irradiated PDR. We derived the column
density of all the species, and determined the deuterium fractions (Dfrac). The
values of Dfrac are around 0.01 for all the observed species, except for HCO+
and N2H+ which have values 10 times lower. The values found in Mon R2 are well
explained with pseudo-time-dependent gas-phase model in which deuteration
occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally,
the [H13CN]/[HN13C] ratio is very high (~11) for the 10 km/s component, which
also agree with our model predictions for an age of ~0.01-0.1 Myr. The
deuterium chemistry is a good tool for studying star-forming regions. The
low-mass star-forming regions seem well characterized with Dfrac(N2H+) or
Dfrac(HCO+), but it is required a complete chemical modeling to date massive
star-forming regions, because the higher gas temperature together with the
rapid evolution of massive protostars.Comment: 14 pages of manuscript, 17 pages of apendix, 7 figures in the main
text, accepted for publication in A&
The IRAM-30m line survey of the Horsehead PDR: II. First detection of the l-C3H+ hydrocarbon cation
We present the first detection of the l-C3H+ hydrocarbon in the interstellar
medium. The Horsehead WHISPER project, a millimeter unbiased line survey at two
positions, namely the photo-dissociation region (PDR) and the nearby shielded
core, revealed a consistent set of eight unidentified lines toward the PDR
position. Six of them are detected with a signal-to-noise ratio from 6 to 19,
while the two last ones are tentatively detected. Mostly noise appears at the
same frequency toward the dense core, located less than 40" away. We
simultaneously fit 1) the rotational and centrifugal distortion constants of a
linear rotor, and 2) the Gaussian line shapes located at the eight predicted
frequencies. The observed lines can be accurately fitted with a linear rotor
model, implying a 1Sigma ground electronic state. The deduced rotational
constant value is Be= 11244.9512 +/- 0.0015 MHz, close to that of l-C3H. We
thus associate the lines to the l-C3H+ hydrocarbon cation, which enables us to
constrain the chemistry of small hydrocarbons. A rotational diagram is then
used to infer the excitation temperature and the column density. We finally
compare the abundance to the results of the Meudon PDR photochemical model.Comment: 9 pages, 7 PostScript figures. Accepted for publication in Astronomy
\& Astrophysics. Uses aa LaTeX macro
The 35Cl/37Cl isotopic ratio in dense molecular clouds: HIFI observations of hydrogen chloride towards W3A
We report on the detection with the HIFI instrument on board the Herschel
satellite of the two hydrogen chloride isotopologues, H35Cl and H37Cl, towards
the massive star-forming region W3A. The J=1-0 line of both species was
observed with receiver 1b of the HIFI instrument at 625.9 and 624.9 GHz. The
different hyperfine components were resolved. The observations were modeled
with a non-local, non-LTE radiative transfer model that includes hyperfine line
overlap and radiative pumping by dust. Both effects are found to play an
important role in the emerging intensity from the different hyperfine
components. The inferred H35Cl column density (a few times 1e14 cm^-2), and
fractional abundance relative to H nuclei (~7.5e^-10), supports an upper limit
to the gas phase chlorine depletion of ~200. Our best-fit model estimate of the
H35Cl/H37Cl abundance ratio is ~2.1+/-0.5, slightly lower, but still compatible
with the solar isotopic abundance ratio (~3.1). Since both species were
observed simultaneously, this is the first accurate estimation of the
[35Cl]/[37Cl] isotopic ratio in molecular clouds. Our models indicate that even
for large line opacities and possible hyperfine intensity anomalies, the H35Cl
and H37Cl J=1-0 integrated line-intensity ratio provides a good estimate of the
35Cl/37Cl isotopic abundance ratio.Comment: Accepted for publication in Astronomy and Astrophysics (Herschel
special issue
Kinematics of the ionized-to-neutral interfaces in Monoceros R2
Context. Monoceros R2 (Mon R2), at a distance of 830 pc, is the only
ultra-compact H ii region (UC H ii) where its associated photon-dominated
region (PDR) can be resolved with the Herschel Space Observatory. Aims. Our aim
is to investigate observationally the kinematical patterns in the interface
regions (i.e., the transition from atomic to molecular gas) associated with Mon
R2. Methods. We used the HIFI instrument onboard Herschel to observe the line
profiles of the reactive ions CH+, OH+ and H2O+ toward different positions in
Mon R2. We derive the column density of these molecules and compare them with
gas-phase chemistry models. Results. The reactive ion CH+ is detected both in
emission (at central and red-shifted velocities) and in absorption (at
blue-shifted velocities). OH+ is detected in absorption at both blue- and
red-shifted velocities, with similar column densities. H2O+ is not detected at
any of the positions, down to a rms of 40 mK toward the molecular peak. At this
position, we find that the OH+ absorption originates in a mainly atomic medium,
and therefore is associated with the most exposed layers of the PDR. These
results are consistent with the predictions from photo-chemical models. The
line profiles are consistent with the atomic gas being entrained in the ionized
gas flow along the walls of the cavity of the H ii region. Based on this
evidence, we are able to propose a new geometrical model for this region.
Conclusions. The kinematical patterns of the OH+ and CH+ absorption indicate
the existence of a layer of mainly atomic gas for which we have derived, for
the first time, some physical parameters and its dynamics.Comment: 6 pages, 5 figures. Accepted for publication in A&
Spatial distribution of small hydrocarbons in the neighborhood of the Ultra Compact HII region Monoceros R2
We study the chemistry of small hydrocarbons in the photon-dominated regions
(PDRs) associated with the ultra-compact HII region Mon R2. Our goal is to
determine the variations of the abundance of small hydrocarbons in a high-UV
irradiated PDR and investigate their chemistry. We present an observational
study of CH, CCH and c-CH in Mon R2 combining data obtained with the
IRAM 30m telescope and Herschel. We determine the column densities of these
species, and compare their spatial distributions with that of polycyclic
aromatic hydrocarbon (PAH). We compare the observational results with different
chemical models to explore the relative importance of gas-phase, grain-surface
and time-dependent chemistry in these environments. The emission of the small
hydrocarbons show different patterns. The CCH emission is extended while CH and
c-CH are concentrated towards the more illuminated layers of the PDR.
The ratio of the column densities of c-CH and CCH shows spatial
variations up to a factor of a few, increasing from
_3_2 in the envelope to a maximum of
towards the 8m emission peak. Comparing these results
with other galactic PDRs, we find that the abundance of CCH is quite constant
over a wide range of G, whereas the abundance of c-CH is higher in
low-UV PDRs. In Mon R2, the gas-phase steady-state chemistry can account
relatively well for the abundances of CH and CCH in the most exposed layers of
the PDR, but falls short by a factor of 10 to reproduce c-CH.
In the molecular envelope, time-dependent effects and grain surface chemistry
play a dominant role in determining the hydrocarbons abundances. Our study
shows that CCH and c-CH present a complex chemistry in which UV
photons, grain-surface chemistry and time dependent effects contribute to
determine their abundances.Comment: 18 pages, 11 figures, 7 tables. Proposed for acceptance in A&A.
Abstract abridge
- …