517 research outputs found

    The impact of an ideal dynamic building envelope on the energy performance of low energy office buildings

    Get PDF
    This paper shows the results of a research activity aimed at assessing the advantages of an ideal adaptive building skin over conventional building envelope systems. The basic idea underlying the research consists in imagining an ideal building envelope system characterised by the capability of continuously changing (within a certain range) some of its thermo-physical and optical properties. The reason for the continuous tuning of thermo-physical and optical properties lies in the assumption that an optimised (fixed) configuration, where the properties do not change over time, is not able to minimise the total energy demand of the building at each moment. For the sake of this purpose, an ideal dynamic WWR (Window-to-Wall Ratio) building envelope system for low energy office buildings was modelled and simulated. An integrated thermal-lighting building simulation tool was used. The energy performance of such a system was then analysed and compared against the performance of a conventional façade realised with best-available technologies. The results of the investigation demonstrated the advantages of a dynamic WWR configuration over a static one. However, the improvements achieved in energy demand were lower than expected. This behaviour is strictly related to the configuration of the building used as a reference, which already showed a very high energy performance. Limitations presented by the research method are also briefly pointed out and discussed

    Modelling and validation of a single-storey flexible double-skin façade system with a building energy simulation tool

    Get PDF
    Double skin facades are adaptive envelopes designed to improve building energy use and comfort performance. Their adaptive principle relies on the dynamic management of the cavity's ventilation flow and, when available, of the shading device. They can also be integrated with the environmental systems for heating, cooling, and ventilation. However, in most cases, the possible exploitation of the ventilation airflow is not fully enabled, as the adoption of only one or two possible airpath limits the possibility that this facade architecture offers, meaning that flexible interaction with the environmental systems cannot be planned. This work aims to develop, using an existing software tool for building energy simulation, a numerical model of a flexible double-skin facade module capable of fully exploiting the adaptive features of such an envelope concept by switching between different cavity ventilation strategies. Leveraging the "Double Glass Facade" component available in IDA ICE, a new model for a flexible double-skin facade module was developed, and its performance in replicating the thermophysical behaviours of such a dynamic system was assessed by comparison with experimental data collected through a dedicated experimental activity using one the outdoor test cells of the TWINS facility in Torino (Italy). The accuracy of the predictions of the new model for a flexible double-skin facade was in line with that obtained by the conventional "Double Glass Facade" component to simulate traditional double-skin facades. The mean bias errors obtained were lower than 1.5 degrees C and 4 W/m2, for air and surface temperature values and for transmitted long-wave or short-wave heat flux values, respectively. By establishing a new archetype model to study the performance and optimal integration of a large class of double-skin facade modules, including fully flexible ones, this work demonstrates the possibility of modifying existing models in building energy simulation tools to study unconventional building envelope model solutions such as adaptive facade systems

    Characterization and energy performance of a slurry PCM-based solar thermal collector: a numerical analysis

    Get PDF
    Flat plate solar thermal collector is the most common technology for solar energy conversion at the building scale. This technology has been established since long time and continuous developments have been achieved as time passed by; significant improvements of flat plate solar thermal collectors are thus now limited. A novel approach to increase further the performance of this technology is based on the exploitation of the latent heat of the heat carrier fluid. In order to assess this strategy, a previously developed numerical model of flat plate solar thermal collector with slurry PCM as heat carrier is herewith used to simulate the technology. The characterization and energy performance of such a system are herewith presented, based on the outcome of the numerical analysis. The results demonstrate that the novel approach is able to improve the performance of the system under different boundary conditions and in different climates: the improvement in the instantaneous efficiency is in the range 5-10%, while during the winter season the converted heat by the slurry PCM-based system is 20-40% higher than that of a conventional water based solar collector, depending on the climates – the colder the climate, the larger the improvement

    Relation between daylight availability and electric lighting in a single-family house

    Get PDF
    Daylight availability is an important aspect that can potentially improve both the quality and the energy performance of buildings. However, it is not always straightforward easy to assure that an increase in the daylight availability leads to a reduction of electric energy use for artificial lighting. In this study, experimental measurements and numerical simulations were conducted to analyse the relation between the uses of artificial light and the daylighting availability for different groups of users who lived for one month each in a Zero Emission Building single-family house located in Trondheim, Norway. The use of electric lighting and the outdoor environment conditions (irradiance and illuminance on the horizontal plan) were recorded through advanced daylighting simulations, carried out with DIVA-for-Rhino, the daylighting availability during the periods of occupancy was then reconstructed, using as input data the outdoor environmental variable recorded during the experimental analysis. The results show that the coefficient of correlation between daylight availability and the artificial light is in general low and the use of artificial lighting seems to be largely independent from the availability of natural light

    Modelling double skin façades (DSFs) in whole-building energy simulation tools: Validation and inter-software comparison of a mechanically ventilated single-story DSF

    Get PDF
    Double skin façades (DSFs) have been proposed as responsive building systems to improve the building envelope's performance. Reliable simulation of DSF performance is a prerequisite to support the design and implementation of these systems in real buildings. Building energy simulation (BES) tools are commonly used by practitioners to predict the whole building energy performance, but the simulation of the thermophysical behaviour of DSFs may be challenging when carried out through BES tools. Using an exhaust-air façade case study, we analyse and assess the reliability of four popular BES tools when these are used to simulate a DSF, either through available in-built models or through custom-built representations based on zonal models. We carry out this study by comparing numerical simulations and experimental data for a series of significant thermophysical quantities, and we reflect on the performance and limitations of the different tools. The results show that no tool is outstandingly better performing over the others, but some tools offer better predictions when the focus is placed on certain thermophysical quantities, while others should be chosen if the focus is on different ones. After comparing the different models’ limitations and challenges, we conclude that BES tools can simulate the performance of DSF systems over long periods. However, their use alone is not recommended when the simulation's scope is to replicate and study short-term phenomena and dynamic aspects, such as sizing the building's HVAC system

    Photonic crystals of coated metallic spheres

    Full text link
    It is shown that simple face-centered-cubic (fcc) structures of both metallic and coated metallic spheres are ideal candidates to achieve a tunable complete photonic bandgap (CPBG) for optical wavelengths using currently available experimental techniques. For coated microspheres with the coating width to plasma wavelength ratio lc/λp≤10l_c/\lambda_p \leq 10% and the coating and host refractive indices ncn_c and nhn_h, respectively, between 1 and 1.47, one can always find a sphere radius rsr_s such that the relative gap width gwg_w (gap width to the midgap frequency ratio) is larger than 5% and, in some cases, gwg_w can exceed 9%. Using different coatings and supporting liquids, the width and midgap frequency of a CPBG can be tuned considerably.Comment: 14 pages, plain latex, 3 ps figures, to appear in Europhys. Lett. For more info on this subject see http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm
    • …
    corecore