162 research outputs found

    State of the art of nanocrystals – special features, production, nanotoxicology aspects and intracellular delivery

    Get PDF
    Drug nanocrystals are the latest, broadly introduced nanoparticulate carrier to the pharmaceutical market from the year 2000 onwards. The special features of nanocrystals for the delivery of poorly soluble drugs are briefly reviewed (saturation solubility, dissolution velocity, adhesiveness). The industrially relevant bottom up (precipitation) and top down production technologies (pearl milling, high pressure homogenization, combination technologies) are presented. As nanotoxicological aspects, the effect of size, degradability versus biopersistency and intracellular uptake are discussed, classifying the nanocrystals in the low/non-risk group. Intracellular uptake plays a minor or no role for dermal and oral nanocrystals, but it plays a key role for intravenously injected nanocrystals (e.g. nevirapine, paclitaxel, itraconazole). Uptake by the macrophages of the mononuclear phagocytic system (MPS, liver spleen) can modify/optimize blood profiles via prolonged release from the MPS (itraconazole), but also target toxicity by too high organ concentrations and thus cause nanotoxicity. The balance in the competitive intracellular uptake by MPS and the target cells (e.g. blood–brain barrier) decides about therapeutic efficiency. The concept of “differential protein adsorption” to modulate this balance is shown for its applicability to nanocrystals for intracellular delivery to the cells of the blood–brain barrier (atovaquone)

    APPLICABILITY OF A FULL BODY INERTIAL MEASUREMENT SYSTEM FOR KINEMATIC ANALYSIS OF THE DISCUS THROW

    Get PDF
    The aim of the study was the application of a full body inertial measurement system (IMS) for a kinematic analysis of the discus throw and the evaluation of its applicability. For this purpose, one male sports student performed three discus throws equipped with the IMS. All trials were additionally filmed by high-speed video. The results indicate that perfor-mance-relevant information can be obtained regarding the temporal coordination of the body segments and body joint angles. Limitations exist for the accurate detection of the last foot contact related instant and the discus release instant by solely using the IMS data

    The guanine nucleotide exchange factor Vav2 is a negative regulator of parathyroid hormone receptor/G(q) signaling.

    Get PDF
    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor (GPCR) that mediates the endocrine and paracrine effects of parathyroid hormone and related peptides through the activation of phospholipase C beta-, adenylyl cyclase-, mitogen-activated protein kinase-, and beta-arrestin-initiated signaling pathways. It is currently not clear how specificity among these downstream signaling pathways is achieved. A possible mechanism involves adaptor proteins that affect receptor/effector coupling. In a proteomic screen with the PTHR C terminus, we identified vav2, a guanine nucleotide exchange factor (GEF) for Rho GTPases, as a PTHR-interacting protein. The core domains of vav2 bound to the intracellular domains of the PTHR independent of receptor activation. In addition, vav2 specifically interacted with activated G alpha(q) but not with G alpha(s) subunits, and it competed with PTHR for coupling to G alpha(q). Consistent with its specific interaction with G alpha(q), vav2 impaired G(q)-mediated inositol phosphate generation but not G(s)-mediated cAMP generation. This inhibition of G(q) signaling was specific for PTHR signaling, compared with other G(q)-coupled GPCRs. Moreover, the benefit for PTHR-mediated inositol phosphate generation in the absence of vav2 required the ezrin binding domain of Na+/H+-exchanger regulatory factor 1. Our results show that a RhoA GEF can specifically interact with a GPCR and modulate its G protein signaling specificity

    Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes

    Get PDF
    BACKGROUND: Two pertussis toxin sensitive G(i) proteins, G(i2) and G(i3), are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous G(i) isoforms are functionally distinct. To test for isoform-specific functions of G(i) proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC). METHODS: Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gα(i2) (Gα(i2) (-/-)) or Gα(i3) (Gα(i3) (-/-)). mRNA levels of Gα(i/o) isoforms and L-VDCC subunits were quantified by real-time PCR. Gα(i) and Ca(v)α(1) protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings. RESULTS: In cardiac tissue from Gα(i2) (-/-) mice, Gα(i3) mRNA and protein expression was upregulated to 187 ± 21% and 567 ± 59%, respectively. In Gα(i3) (-/-) mouse hearts, Gα(i2) mRNA (127 ± 5%) and protein (131 ± 10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gα(i2) (-/-) mice was lowered (-7.9 ± 0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (-10.7 ± 0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gα(i3) (-/-) mice (-14.3 ± 0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gα(i2) (but not of Gα(i3)) and following treatment with pertussis toxin in Gα(i3) (-/-). The pore forming Ca(v)α(1) protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Ca(v)α(1) and Ca(v)β(2) subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gα(i2). CONCLUSION: Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gα(i) proteins. In particular, loss of Gα(i2) is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway

    MLN64 Transport to the Late Endosome Is Regulated by Binding to 14-3-3 via a Non-canonical Binding Site

    Get PDF
    MLN64 is an integral membrane protein localized to the late endosome and plasma membrane that is thought to function as a mediator of cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria. The protein consists of two distinct domains: an N-terminal membrane-spanning domain that shares homology with the MENTHO protein and a C-terminal steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain that binds cholesterol. To further characterize the MLN64 protein, full-length and truncated proteins were overexpressed in cells and the effects on MLN64 trafficking and endosomal morphology were observed. To gain insight into MLN64 function, affinity chromatography and mass spectrometric techniques were used to identify potential MLN64 interacting partners. Of the 15 candidate proteins identified, 14-3-3 was chosen for further characterization. We show that MLN64 interacts with 14-3-3 in vitro as well as in vivo and that the strength of the interaction is dependent on the 14-3-3 isoform. Furthermore, blocking the interaction through the use of a 14-3-3 antagonist or MLN64 mutagenesis delays the trafficking of MLN64 to the late endosome and also results in the dispersal of endocytic vesicles to the cell periphery. Taken together, these studies have determined that MLN64 is a novel 14-3-3 binding protein and indicate that 14-3-3 plays a role in the endosomal trafficking of MLN64. Furthermore, these studies suggest that 14-3-3 may be the link by which MLN64 exerts its effects on the actin-mediated endosome dynamics

    Drosophila TIEG Is a Modulator of Different Signalling Pathways Involved in Wing Patterning and Cell Proliferation

    Get PDF
    Acquisition of a final shape and size during organ development requires a regulated program of growth and patterning controlled by a complex genetic network of signalling molecules that must be coordinated to provide positional information to each cell within the corresponding organ or tissue. The mechanism by which all these signals are coordinated to yield a final response is not well understood. Here, I have characterized the Drosophila ortholog of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger proteins that belong to the Krüppel-like factor (KLF) family and were initially identified in human osteoblasts and pancreatic tumor cells for the ability to enhance TGF-β response. Using the developing wing of Drosophila as “in vivo” model, the dTIEG function has been studied in the control of cell proliferation and patterning. These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG also regulates the activity of JAK/STAT pathway suggesting a conserved role of TIEG proteins as positive regulators of TGF-β signalling and as mediators of the crosstalk between signalling pathways acting in a same cellular context

    Transcriptional Activity and Nuclear Localization of Cabut, the Drosophila Ortholog of Vertebrate TGF-β-Inducible Early-Response Gene (TIEG) Proteins

    Get PDF
    BackgroundCabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein.Methodology/Principal FindingsTo determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2.Conclusions/SignificanceOur results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins

    Autophagy: Regulation and role in disease

    Full text link
    corecore