19 research outputs found

    Immaterial boys? A large-scale exploration of gender-based differences in child sexual exploitation service users

    Get PDF
    Child sexual exploitation is increasingly recognised nationally and internationally as a pressing child protection, crime prevention and public health issue. In the UK, for example, a recent series of high-profile cases has fuelled pressure on policy-makers and practitioners to improve responses. Yet, prevailing discourse, research and interventions around child sexual exploitation have focused overwhelmingly on female victims. This study was designed to help redress fundamental knowledge gaps around boys affected by sexual exploitation. This was achieved through rigorous quantitative analysis of individual-level data for 9,042 users of child sexual exploitation services in the UK. One third of the sample was male and gender was associated with statistically significant differences on many variables. The results of this exploratory study highlight the need for further targeted research and more nuanced and inclusive counter-strategies

    Enhanced microbial bile acid deconjugation and impaired ileal uptake in pregnancy repress intestinal regulation of bile acid synthesis

    Get PDF
    Pregnancy is associated with progressive hypercholanemia, hypercholesterolemia, and hypertriglyceridemia, which can result in metabolic disease in susceptible women. Gut signals modify hepatic homeostatic pathways, linking intestinal content to metabolic activity. We sought to identify whether enteric endocrine signals contribute to raised serum bile acids observed in human and murine pregnancies, by measuring fibroblast growth factor (FGF) 19/15 protein and mRNA levels, and 7α-hydroxy-4-cholesten-3-one. Terminal ileal farnesoid X receptor (FXR)-mediated gene expression and apical sodium bile acid transporter (ASBT) protein concentration were measured by qPCR and western blotting. Shotgun whole-genome sequencing and ultra-performance liquid chromatography tandem mass spectrometry were used to determine the cecal microbiome and metabonome. Targeted and untargeted pathway analyses were performed to predict the systemic effects of the altered metagenome and metabolite profiles. Dietary CA supplementation was used to determine whether the observed alterations could be overcome by intestinal bile acids functioning as FXR agonists. Human and murine pregnancy were associated with reduced intestinal FXR signaling, with lower FGF19/15 and resultant increased hepatic bile acid synthesis. Terminal ileal ASBT protein was reduced in murine pregnancy. Cecal bile acid conjugation was reduced in pregnancy because of elevated bile salt hydrolase-producing Bacteroidetes. CA supplementation induced intestinal FXR signaling, which was not abrogated by pregnancy, with strikingly similar changes to the microbiota and metabonome as identified in pregnancy. Conclusion: The altered intestinal microbiota of pregnancy enhance bile acid deconjugation, reducing ileal bile acid uptake and lowering FXR induction in enterocytes. This exacerbates the effects mediated by reduced bile acid uptake transporters in pregnancy. Thus, in pregnant women and mice, there is reduced FGF19/15-mediated hepatic repression of hepatic bile acid synthesis, resulting in hypercholanemia

    Prevalence of ultrasound-detected knee synovial abnormalities in a middle-aged and older general population—the Xiangya Osteoarthritis Study

    Get PDF
    Background: There is paucity of data on the prevalence of ultrasound-detected synovial abnormalities in the general population, and the relationship between synovial changes and knee pain remains unclear. We examined the prevalence of synovial abnormalities on ultrasound and the relationship of these features with knee pain and radiographic osteoarthritis (ROA) in a community sample. Methods: Participants aged 50 years or over were from the Xiangya Osteoarthritis Study, a community-based cohort study. Participants were questioned about chronic knee pain and underwent (1) ultrasonography of both knees to determine presence of synovial hypertrophy (≄ 4 mm), effusion (≄ 4 mm), and Power Doppler signal [PDS; yes/no]; and (2) standard radiographs of both knees (tibiofemoral and patellofemoral views) to determine ROA. Results: There were 3755 participants (mean age 64.4 years; women 57.4%). The prevalence of synovial hypertrophy, effusion, and PDS were 18.1% (men 20.2%; women 16.5%), 46.6% (men 49.9%; women 44.2%), and 4.9% (men 4.9%; women 5.0%), respectively, and increased with age (P for trend < 0.05). Synovial abnormalities were associated with knee pain, with adjusted odds ratios (aORs) of 2.39 (95% confidence interval [CI] 2.00–2.86) for synovial hypertrophy, 1.58 (95%CI 1.39–1.80) for effusion, and 4.36 (95%CI 3.09–6.17) for PDS. Similar associations with ROA were observed, the corresponding aORs being 4.03 (95%CI 3.38–4.82), 2.01 (95%CI 1.76–2.29), and 6.49 (95%CI 4.51–9.35), respectively. The associations between synovial hypertrophy and effusion with knee pain were more pronounced among knees with ROA than those without ROA, and the corresponding P for interaction were 0.004 and 0.067, respectively. Conclusions: Knee synovial hypertrophy and effusion are more common and increase with age, affecting men more than women. All three ultrasound-detected synovial abnormalities associate both with knee pain and ROA, and knee synovial hypertrophy or effusion and ROA may interact to increase the risk of knee pain

    Clinical and Preclinical Evidence for Roles of Soluble Epoxide Hydrolase in Osteoarthritis Knee Pain

    Get PDF
    Objective: Chronic pain due to osteoarthritis (OA) is a major clinical problem, and existing analgesics often have limited beneficial effects and/or adverse effects, necessitating the development of novel therapies. Epoxyeicosatrienoic acids (EETs) are endogenous antiinflammatory mediators, rapidly metabolized by soluble epoxide hydrolase (EH) to dihydroxyeicosatrienoic acids (DHETs). We undertook this study to assess whether soluble EH–driven metabolism of EETs to DHETs plays a critical role in chronic joint pain associated with OA and provides a new target for treatment. Methods: Potential associations of chronic knee pain with single-nucleotide polymorphisms (SNPs) in the gene-encoding soluble EH and with circulating levels of EETs and DHETs were investigated in human subjects. A surgically induced murine model of OA was used to determine the effects of both acute and chronic selective inhibition of soluble EH by N-[1-(1-oxopropy)-4-piperidinyl]-Nâ€Č-(trifluoromethoxy)phenyl]-urea (TPPU) on weight-bearing asymmetry, hind paw withdrawal thresholds, joint histology, and circulating concentrations of EETs and DHETs. Results: In human subjects with chronic knee pain, 3 pain measures were associated with SNPs of the soluble EH gene EPHX2, and in 2 separate cohorts of subjects, circulating levels of EETs and DHETs were also associated with 3 pain measures. In the murine OA model, systemic administration of TPPU both acutely and chronically reversed established pain behaviors and decreased circulating levels of 8,9-DHET and 14,15-DHET. EET levels were unchanged by TPPU administration. Conclusion: Our novel findings support a role of soluble EH in OA pain and suggest that inhibition of soluble EH and protection of endogenous EETs from catabolism represents a potential new therapeutic target for OA pain

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling

    A Treatise on Love

    No full text
    corecore