557 research outputs found

    Quantum many-body systems out of equilibrium

    Get PDF
    Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.Comment: 7 pages, review and perspectives article, updated to journal version after embarg

    Comment on ``Enhancement of the Tunneling Density of States in Tomonaga-Luttinger Liquids''

    Full text link
    In a recent Physical Review Letter, Oreg and Finkel'stein (OF) have calculated the electron density of states (DOS) for tunneling into a repulsive Luttinger liquid close to the location of an impurity. The result of their calculation is a DOS which is enhanced with respect to the pure system, and moreover diverging for not too strong repulsion. In this Comment we intend to show that OF's calculation suffers from a subtle flaw which, being corrected, results into a DOS not only vanishing at zero frequency but in fact suppressed in comparison with the DOS of a pure Luttinger liquid.Comment: 1 page, Revte

    Crystal Distortion and the Two-Channel Kondo Effect

    Full text link
    We study a simple model of the two-channel Kondo effect in a distorted crystal. This model is then used to investigate the interplay of the Kondo and Jahn-Teller effects, and also the Kondo effect in an impure crystal. We find that the Jahn-Teller interaction modifies the characteristic energy scale of the system below which non-Fermi-liquid properties of the model become apparent. The modified energy scale tends to zero as the limit of a purely static Jahn-Teller effect is approached. We find also that the non-Fermi-liquid properties of the quadrupolar Kondo effect are not stable against crystal distortion caused by impurities.Comment: 11 page

    Equilibration via Gaussification in fermionic lattice systems

    Get PDF
    In this work, we present a result on the non-equilibrium dynamics causing equilibration and Gaussification of quadratic non-interacting fermionic Hamiltonians. Specifically, based on two basic assumptions - clustering of correlations in the initial state and the Hamiltonian exhibiting delocalizing transport - we prove that non-Gaussian initial states become locally indistinguishable from fermionic Gaussian states after a short and well controlled time. This relaxation dynamics is governed by a power-law independent of the system size. Our argument is general enough to allow for pure and mixed initial states, including thermal and ground states of interacting Hamiltonians on and large classes of lattices as well as certain spin systems. The argument gives rise to rigorously proven instances of a convergence to a generalized Gibbs ensemble. Our results allow to develop an intuition of equilibration that is expected to be more generally valid and relates to current experiments of cold atoms in optical lattices.Comment: 5+15 pages, 3 figures, presentation improve

    Reliable quantum certification for photonic quantum technologies

    Get PDF
    A major roadblock for large-scale photonic quantum technologies is the lack of practical reliable certification tools. We introduce an experimentally friendly - yet mathematically rigorous - certification test for experimental preparations of arbitrary m-mode pure Gaussian states, pure non-Gaussian states generated by linear-optical circuits with n-boson Fock-basis states as inputs, and states of these two classes subsequently post-selected with local measurements on ancillary modes. The protocol is efficient in m and the inverse post-selection success probability for all Gaussian states and all mentioned non-Gaussian states with constant n. We follow the mindset of an untrusted prover, who prepares the state, and a skeptic certifier, with classical computing and single-mode homodyne-detection capabilities only. No assumptions are made on the type of noise or capabilities of the prover. Our technique exploits an extremality-based fidelity bound whose estimation relies on non-Gaussian state nullifiers, which we introduce on the way as a byproduct result. The certification of many-mode photonic networks, as those used for photonic quantum simulations, boson samplers, and quantum metrology, is now within reach.Comment: 8 pages + 20 pages appendix, 2 figures, results generalized to scenarios with post-selection, presentation improve

    X-ray edge singularity of bilayer graphene

    Full text link
    The X-ray edge singularity of bilayer graphene is studied by generalizing the path integral approach based on local action which was employed for monolayer graphene. In sharp contrast to the case of monolayer graphene, the bilayer graphene is found to exhibit the edge singularity even at half-filling and its characteristics are determined by interlayer coupling. At finite bias the singular behaviors sensitively depend on the relative magnitude of fermi energy and applied bias, which is due to the peculiar shape of energy band at finite bias.Comment: RevTeX 4.1, 4 pages. No figur
    • …
    corecore