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Quantum many-body systems out of equilibrium
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Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent
years have seen a tremendous progress in approaching these questions, not least due to experiments with cold
atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in
understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium
due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hy-
pothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum

simulations.

How do closed quantum many-body systems out of equisuch as the Ising model, as well as bosonic or fermionic lat-
librium eventually equilibrate? How and in precisely what tice systems, prominently Fermi- and Bose-Hubbard models.
way can such quantum systems with many degrees of freedoin the latter case, the Hamiltonian takes the form
thermalise? It was established early on how to captureieguil
rium states corresponding to some temperature in the frame- H=1J Z(b}bk + b,ibj) + Uan(nj -1, (2
work of quantum statistical mechanics, but it seems much les (j,k) j
clear how such states are eventually reached via the loeal dy
namics following microscopic laws. This dichotomy gives with n; = blb;, b; denoting the bosonic annihilation operator
rise to some tension between a microscopic description angk site j, the parameters’, J being real and the sury, k)
one in terms of the familiar ensembles of statistical meehanrunning over nearest neighbours On'y_ Common variants of
ics. Italso leads to the question of how the actual dynanfics ahis are models with other short range interactions, or long

quantum phase transitions can be grasped. Asking questiofgnge interactions with a strength decaying polynomiatly i
of this type has a long tradition, but many problems have rethe distance.

mained largely unresolved. It was only relatively recettilgt
they moved back into the focus of attention. This developmen
is driven by the availability of experiments that allow t@pe

such questions under controlled conditions, but also by new o .
developments in theoretical physics. The present revievsai _Nvestigating the fundamental connection between thermo-

at providing a first impression of important progress in thisdynamics _ar;f the dynamics of closed quantum systems has a
rapidly developing field of research, it emphasises prargisi '°"9 tra(?mo but hafs also been_I%k_ey t8p|c m_rec_en';]years.
perspectives, and collects a number of key references.nGive VEY clean setting for non-equilibrium dynamics is the one

H 9,11-16. T+
its brevity, it can by no means be faithful to all developnsent €Merging from a suddeglobal quenchr : Initially, the
or cover the whole literature of the field. system is in a statgy, which could be the ground state of a

local Hamiltonian. Then one quickly alters the system’s pa-

rameters globally and considers the many-body unitary time
Local quantum many-body systems evolution under some local Hamiltonidh. Of specific inter-

est are expectation values of observablest later times

Equilibration after quenches

arXiv:1408.5148v2 [quant-ph] 1 Sep 2015

The physical systems considered here lacal quantum
many-body systemaith finite-range interactions, ubiquitous (A(®)
in condensed-matter physics. They can be described by some
interaction graph, with physical constituents at the eesi
The system is governed by a Hamiltonian that can be writte
as

=tr(e " py el A). 3)

main question is to what extent and for what times the sit-
uation can be described by a suitable equilibrium ensemble.
rNotably, the dynamics is time reversal invariant and fortdini
systems recurrent, so a priori it seems far from clear how and
H— Z h;. 1) in what sense equilibrium can be reached dynamically.

J

A first important insight is that such systems generically
indeed relax and equilibrate in the following sense: Even
Most commonly considered are nearest-neighbour interadhough the dynamics is entirely unitary, following trangie
tions, where each; acts non-trivially on finitely many sites. non-equilibrium dynamics, it is expectation valuge§(t)) of
Paradigmatic examples of this type are spin lattice systemsnany observableat equilibrate. This is specifically true for
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local observablesvhich are supported only on a small num- esting research topic in its own right.
ber of sites. The apparent long time equilibrium state has to

be equal to the time average L
Thermalisation

I : :
= i - dt —itH 1tH. 4 ) ) o
YT /0 ¢ poc “) The success of thermodynamics in describing large scale

. ) ) ) systems indicates that often the equilibrium values carebe d
This state is thenaximum entropy stateolding all constants  s¢riped by few parameters such as the global temperature and
of motion fixed”. In case of non-degenerate eigenvalues ofarticle number. We use the tethermalisatiorto refer to the
the Hamiltonian, this ensemble is also calleddi@gonal en-  equilibration towards a statethat is in a suitable sense close
semblé®. This feature is reminiscent of a dynamical Jaynes'to peing indistinguishable from a thermal equilibrium stat
principle: A many-body system is pushed out of equilibrium proportional toe=## for some inverse temperatuge > 0.
and follows unitary dynamics. Yet, for most times, the Sys-There are several mechanisms that can lead to thermatisatio
tems appears as if it had equilibrated to a maximum entropy, thjs sense: The first is based on #igenstate thermalisa-
state. tion hypothesigETH)*3740. It conjectures that sufficiently

The general expectation that many-body systems equilieomplex quantum systems have eigenstates that — for phys-
brate can be made rigorous in a number of senses: For sonlly relevant observables such as local ones — are practi-
free models, specifically for the case of the integrable noneally indistinguishable from thermal states with the same a
interacting limit of the Bose-Hubbard model, equilibratis ~ erage energy. The ETH and its breakdown in integrable sys-
proven to be true in the strong sense of equilibration duringems have recently been investigated extensively, mostlty w
intervals: Here, one can show for local observabdethat  numerical methods. Supporting evidence for it has been col-
|(A(t)) — tr(wA)| is arbitrarily small after a known initial re- lected in a plethora of modé@§>4:43,
laxation time, and remains so for a time that grows linearly

with the system siZ¢®. One merely has to assume that theth lisation i Klv interacti " der st
otherwise arbitrary initial state has suitable polynoiwide- ermalisation In weakly interacting systems under steong
conditions on the initial staté. In addition, dynamical ther-

caying correlations. At the heart of such a rigorous argumen~~_ =" ; .
are Lieb-Robinson bounds as well as non-commutative dentr alisation of local expectation values to those in the _g_loba
ermal stat® has been shown under stronger conditions,

limit theorems. A : .

. . . _ most notably translation invariance and the existence of a

If no locality structure is available or is made use O_f’ Or_]eunique Gibbs state. The notion délative thermalisatioff

can still show equilibration on average for all Hamiltoni- focuses on the decoupling of a subsystem from a reference
ans t_hat have non-degenerate energy gaps: One can bo tem. So far, there is no compelling proof that globally
the tl_me averag@te[om)[(A(t)) B tr_(WA” by a quantity guenched non-integrable systems dynamically thermalise.
that is usually exponentially small in the system $iZé&
This means that out of equilibrium quantum systems ap- These dynamical approaches are complemented by works
pear relaxed for overwhelmingly most times, even if by thatbased onypicalityargument$%. Here, rather than following
statement alone no information on time scales can be ddhe dynamical evolution of a system, one tries to justify the
duced. More refined bounds have been derived, also pr@pplicability of ensembles by showing that most states draw
viding some information about the relevant time scales ofandomly according to some measure have the same physical
equilibratior>23, but they are far off from those observed in Properties as some appropriate ensemble such as the cainonic

numerical simulatiorfs"*?16 and experiment4?425, These OnNe.

fipdings are also relatgd to further efforts of describing th If a quantum system is integraBiein the sense that it has

size of the time fluctuations after relaxatféf’. local conserved quantities, one should not expect the syste
By no means are sudden global quenches the only relgp thermalise: These constants of motion prohibit full ther

vant setting of quantum many-body systems out of equilibmalisation to the canonical ensemble. One can still expect

rium. Similarly important are scenarioslotal quenche¥?°,  the system to equilibrate to the maximum entropy state given

where not the entire system is uniformly modified, but rathetthese locally conserved quantite¥’, a so calledjeneralized

the system is locally suddenly driven out of equilibrium Gibbs ensembfé®. Effective thermalisation has been putinto

by a change limited to a bounded number of lattice siteseontext with unitary quantum dynamics under conditions of
Ramp$%3%-33, during which the Hamiltonian is changed ac- classical chade.

cording to some schedule, are of interest in studies of the dy . )

namics of quantum phase transitions. The response of a sys-S€veral quantum many-body systems exhibit some instance
tem to a sudden alteration of its geometry can be studied b@f Pre-thermalisation This term refers to any apparent equi-
geometric quench&¥35. Time-dependent periodic drivirig Ibration to a meta-stable state on a short time scale, befor
discussed in a separate section. In this brief review, dlose— ON @ long time scale — the system relaxes to a state in-
many-body systems are in the focus of attention. It should béistinguishable from a genuine thermal state. Examples are
clear that specificallpump-probeype setting® generate an almost mtegrablelsysteﬁié and continuous systems of cou-
out of equilibrium situation that can be used as a diagnosti®!ed Bose-Einstein condensates

tool in the condensed-matter context, giving rise to anrinte

Without invoking the ETH one can still rigorously show
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“Light cones” and entanglement dynamics optical lattices one commonly studies the transport oigas
starting from an initially trapped situatié#3, or of quasi-
An important stepping stone for a better understanding oparticle$”°. Two of the key aims are to distinguish between
the non-equilibrium dynamics of local Hamiltonian models i diffusive and ballistic transport and to understand thetém
the insight thatieb-Robinson bouné%®5 limit the speed of tions of linear response theofy. While simple, integrable
information propagation in such systems. There are severanodels can be solved exactly and thus provide an excellent
ways of stating such bounds: One is to say that for any twdenchmark, our understanding of transport in realistioset

observablest andB heavily relies on numerical tools. Tools explicitly stagithe
full wave function in the memory, such as exact diagonalisa-
I[A(t), B]|| < c||A|| | B|| min{|A|,|B|} e+ (dAB)=v ), tion, are limited to comparably small systems. Tensor ngtwo

(5) tools such t-DMRG, TEBD, and variants ther&$p allow to
whered(A, B) is the distance between the support of the ob-parametrize the state more efficiently and are accurate up to
servables|A| and|B| the size of their supports, > 0 takes  machine precision as long as entanglement entropies are suf
the role of a group velocity, and 1« > 0 are constants. That ficiently small“. Thus, for short and intermediate times these
is to say, information propagation outside a “light-cong” i tools allow for an investigation of transport and equiltia
exponentially suppressed. It immediately follows thatreor in systems with several hundred st&$7%73,
lation functions can significantly grow in time only insideet
light coné®. While these bounds are not necessarily tight, theapsence of thermalisation and many-body localisation
picture that the local dynamics leads to excitations tiagel
through the system with velocity offers a7l(1)9'[2(311;e;<7planatory Crucial for transport properties of materials is the inflcen
potential for non-equilibrium dynamig§”92457. Such of irregularities such as defects. The impact of randomrpote
light-cone dynamics has been experimentally observed-in oRjg|s on particle mobility has thus been the subject of inten
tical Iattlpe systems using noveltools that allow for saglte e study over the last century, culminating in the famass r
addressing and in continuous systems of cold atdfs sult of Anderson, showing full localisation both of the aige

The light-cone-like propagation of information has imphc  functions as well as of the dynamiégor single particledis-
tions onentanglement dynamicMany-body states are said to ordered models In the case of non-interacting fermions in
satisfy anarea lawfor the entanglement entropy, if for a sub- one dimension or equivalently, via the Jordan-Wigner trans
set of sites the latter scales only like the boundary “aré#i®  formation, for free spin chains, Anderson’s result dingctl
subset rather than its “volum@&®. It has been shown that if gives strong localisation of all fermionic modes. This lead
initially such a law holds, this will remain to be true foriger  to the entanglement entropy remaining upper bounded from
times>51. Yet, at the same time, the pre-factor of this areaabové® and a vanishing Lieb-Robinson velocity These sys-
law is expected to grow exponentidify This is the ultimate tems thus fail to serve as their own heat bath and transport
reason why numericaensor network methobf*, such as  of any kind is completely suppressed. For interacting many-
the density-matrix renormalisation group metf8dcan sim-  body systems, the effects of disorder are still much leswcle
ulate out of equilibrium dynamics efficiently for short time despite great efforté. Interestingly, both the support of time
on a classical computer, while long times are not accessiblevolved local observables as well as the entanglementsntro
This is a feature shared by other powerful numerical methare found to grow logarithmically in the interacting casel an
ods as well, such @donte-Carl¢® anddynamical mean field are thus unbound@®j in stark contrast to the non-interacting
theory (DMFT$’. This is in line with complexity-theoretic case. Dynamical aspects of many-body localisation are ex-
arguments that provide evidence that generic quantum longected to go along with localisation of the eigenstates. In
time dynamics cannot be efficiently classically simuléfed several recent studies localisation effects due to disdrales
If interactions are not strictly local, modified Lieb-Robon  been associated with a lack of entanglement in many energy
bounds still hol&, giving rise to a rich phenomenology which eigenstate7%8 or alternatively only in those below a so
has been experimentally explored in systems of trapped iongalled mobility edgé”’8. This could lead to a phase transi-

exhibiting long-range ordef®. tion between a disordered insulator with exactly zero cendu
tivity and a conducting pha&& The localisation of eigen-
Transport states leads to a clear violation of the ETH and connects to

an absence of thermalisation effect for localising manghybo
Understanding electronic transport is one of the main motiSyStems and the existence of local constants of motion gethe

vations that started the field of condensed matter physits anodels””®. While these signatures of many-body localisation
gave rise to a large body of work trying to accurately capturd'ave been extensively explored, a comprehensive defimifion
the conductivity properties of these systems. Most relefiean ~ Many-body localisation is still lacking.

the purpose of this review are the transport propertiesnof si

ple paradigmatic models such as the Heisenberg spin chain @ynamics of quantum phase transitions

Hubbard-type models. In these models, transport is exgecte

to lead to equilibration, as it allows the system to locatisglet Exploring the dynamical signatures of phase transitions is
its precise initial configuratidi®. In spin chains, transport an interesting problem in its own right. It connects to the im
typically refers to a spreading of magnetised dom&ingn portant question of how slow an experimental ramp needs to
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be to avoid the creation of defects when preparing a quanconstituent®®°. Due to the involved Coulomb interaction,
tum phase and whether this is at all possible in the thermodythese systems are, among many other applications, wedbsuit
namic limi!. A key theoretical model for these transitions, to explore the validity of Lieb-Robinson bounds and their
based on the adiabatic theorem, has been provided by Kibblereakdown for long-range interaction®’. Photonic archi-

and ZureR° for the important case of moving from a gapped tecturesas well as arrays cfuperconducting qubitsffer fur-
phase into criticality. Based solely on the critical expatsef  ther promising platforms. While the precisemputational

the model, this strikingly simple formalism predicts themu complexityof analogue simulators has not been identified yet,
ber of introduced defects as a function of the velocity of theand while it is unclear to what extent genuinely reliable-ana
ramp. It has originally been developed for thermal traosii  logue simulation is possible in the absence of fully-fledged
where it has also been experimentally te$t€d. For quan- quantum error correction, there is evidence that such ana-
tum phase transitions such a scaling can be derived in tlite limlogue simulators have the potential of outperforming dlass
of infinitely slow ramps, based on universality arguments to cal computers. Quantum many-body dynamics can already
gether with adiabatic perturbation thedrand seems to be be probed in experimental settings under precisely cdattol
capable of accurately describing the dynamics of quantunconditions for longer times than can be kept track of using
phase transitions when crossing a single critical poinbme  state-of-the-art tensor network methods on modern clalssic
models®. For strongly correlated systems in realistic experi-supercomputeté,

mental settings, the dynamics of quantum phase transisons

more elusi\_/e and there are indications that the comple):ﬁity Operiodically driven systems

the dynamics cannot fully be captured by employing simple
scaling arguments based only on the critical exponentseof th
modef'85. The transition out of criticality has also been in-
vestigated, both numericaf§and experimentalf?. Despite
these first promising results, the dynamics of quantum pha
transitions and how to capture them in terms of simple sgalin
laws is still a largely open problem.

Periodically driving a well controlled quantum system
opens up new vistas for quantum simulations. Consider a
system with a Hamiltonian that satisfié(t) = H(t + 7)

r all timest for some periodr > 0. The eigenstates of
such systems are usually constantly changing in time, leut th
long time dynamics can be inferred from thEloquet opera-
tor%1% {7 (7), which is the time evolution operator over one
Quantum simulations period of driving. The Floguet operator gives rise to ane@ffe

tive HamiltonianH g via

When investigating the non-equilibrium behaviour of large '
scale many-body systems, analytical and numerical tools U(r) = = imHerr, (6)
quickly reach their limits, especially for lattice modeisnore
than one dimension. A particularly exciting perspectiises and the time evolution of the driven system can be seen as
from the idea that controlled quantum many-body system#& stroboscopic simulatid®-1°? of the time evolution under
constitute instances @halogue quantum simulatdfs8788  H.gz. The effective Hamiltonian can be tuned by choosing
overcoming these limitations. These devices mimic natoral an appropriate driving schedule with great flexibility cenc
teracting quantum many-body systems by reconstructirig theing the model parameters. This allows the study of topolog-
Hamiltonian, but now under precisely controlled condition ical effects®® in driven systems and can be used to engineer
This is in contrast taigital quantum simulatorsanticipated ~ gauge field®. This has lead to an experimental realisation
devices that approximate quantum dynamics by suitable-qua®f thetopological Haldane modeh a periodically modulated
tum circuits. Such analogue systems enable one to invéstigaoptical honeycomb latticé® as well as to experimental se-

some of the questions central to the research summarised i1ps featuring-ofstadter band$* andspin-orbit coupling®
this review. in optical lattice architecturé®. The synchronisation of the

Ultra-cold atoms in optical latticesprovide a very Mmotion of periodically driven systems with the drive allows
promising platform for quantum simulators in this the description of the long time behavior bperiodic ensem-
sens&.  With present technology they can be used toble. For free systems it turns out to be given by a maximum
investigate dynamics under Bose- and Fermi-Hubbar@Ntropy ensemble given the constants of mdfioa-— remi-
Hamiltoniang1431325872738590-92 a5 \el| as for emulating Miscent of Jaynes’ principle for systems in equilibrium émel
spin chain®. Due to the flexibility of optical lattice sys- 9generalised Gibbs ensemble emerging during equilibration
tems, e.g., by making use of Feshbach resonances, periodf @ quench.
driving, and superlattices, even sophisticated quantum
simulations are conceivable, e.g., the simulationlatfice  Perspectives for open and closed systems
gauge theorie¥. Continuous optical setups allow for the
investigation of out-of-equilibrium behaviour of quantum  The research field of quantum many-body systems out of
fields® and have successfully been employed to investigatequilibrium is rapidly developing and is taking new and un-
(pre-)thermalisatiof? and out of equilibrium dynamics not expected directions at a remarkably high rate. This is par-
leading to equilibration on relevant time scdfes tially driven by the impetus the field is subjected to through

Another promising architecture is provided bipn  novel experimental developments. In optical lattice syste
chaing’, allowing for the precise control of the individual single-site addressirig°®'%® opens up new possibilities for
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probing the out of equilibrium dynamics; settings with pe-very recently>535561115  The conditions fothermalisation
riodic driving now allow for the study of topologically non- are less clear and it is questionable whether (non-)inbéligsa
trivial situation$%? and to develop a deeper understanding ofis able to capture this phenomenon in all of its fates The
particle physics and condensed matter syst€m€ontinuous  problem ofmany-body localisatiohas recently moved in the
systemgan be controlled with ever increasing precigifi,  focus of attentiof?€°, but it seems fair to say that in the light
suggesting that such systems can serve as a platform for probf the various pictures of the phenomenon in the literatare,
ing even effects ofjravity, such as the Unruh efféd€#!1%.  unifying framework is still missing.
Hybrid architectures, such as cold atoms in optical lagtioe A research area that deserves special attention is based on
side an optical cavity, constitute a particularly promgsav-  the idea that noise and dissipation are not necessarily detr
enue for experimental reseatéh Crucial for further progress mental to attempts to prepare and preserve interestingsstat
will be a deeper understanding of the computational capaef matter. In fact such preparations can be facilitated hity su
bility of analogue quantum simulators and how their correctably engineered local Markovian noi5€ that can be rigor-
functioning can be certified in regimes that are classigadlly —ously captured in terms of a Liouvillian. In this mindset, an
addressablé318890, open system quantum simulator with trapped ions has been
At the same time, new theoretical developments keep thesalised'’, as well as one based of cold atoms controlled
subject exciting, witqguantum information theorgroviding  with localized dissipatioR®. In principle, even symmetry-
a fresh point of view and new methodsntanglement theory protected topologically ordered states can be prepared by
can deliver important new insights specifically for the stud purely dissipative local Liouvillian dynamit¥.
of information propagatiot¥®*%%. Quantum thermodynam- It goes without saying that this perspectives article nyerel
ics'1? — exploring the ultimate limits of thermodynamic pro- touches the surface of this exciting and rapidly developing
cesses in the quantum regime — is now seeking contact witfield. Quantum many-body systems out of equilibrium al-
this field*'3, with interesting perspectives opening up. Thelow us to probe long-standing questions in the foundatidns o
AdS-cft-correspondenadso contributes a novel tool to study statistical mechanics, relate to open questions in cormdens
strongly correlated quantum systems out of equilibfitfm matter theory, and provide a promising platform for anatogu
In spite of the great progress, many questions are still widguantum simulators outperforming classical computers.
open, even very basic ones. While it is understood under We would like to thank many colleagues for numerous dis-
which conditions many-body systenegjuilibrate it is far ~ cussions over the years, and E. Bergholtz, E. T. Campbell,
from clear on whatime scaleghey do so. The main reason A. del Campo, J.-S. Caux, F. Essler, T. Farrelly, M. Rigol,
for this is that the role ofocality for equilibration and ther- and R. Moessner for comments on the manuscript, and the
malisation is, at least from a rigorous perspective, famfro EU (RAQUEL, SIQS), the ERC, the BMBF, and the Studien-
being understood. Steps in this direction have been takign onstiftung des Deutschen Volkes for support.
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