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Quantum many-body systems out of equilibrium
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Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent

years have seen a tremendous progress in approaching these questions, not least due to experiments with cold

atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in

understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium

due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hy-

pothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum

simulations.

How do closed quantum many-body systems out of equi-
librium eventually equilibrate? How and in precisely what
way can such quantum systems with many degrees of freedom
thermalise? It was established early on how to capture equilib-
rium states corresponding to some temperature in the frame-
work of quantum statistical mechanics, but it seems much less
clear how such states are eventually reached via the local dy-
namics following microscopic laws. This dichotomy gives
rise to some tension between a microscopic description and
one in terms of the familiar ensembles of statistical mechan-
ics. It also leads to the question of how the actual dynamics of
quantum phase transitions can be grasped. Asking questions
of this type has a long tradition, but many problems have re-
mained largely unresolved. It was only relatively recentlythat
they moved back into the focus of attention. This development
is driven by the availability of experiments that allow to probe
such questions under controlled conditions, but also by new
developments in theoretical physics. The present review aims
at providing a first impression of important progress in this
rapidly developing field of research, it emphasises promising
perspectives, and collects a number of key references. Given
its brevity, it can by no means be faithful to all developments
or cover the whole literature of the field.

Local quantum many-body systems

The physical systems considered here arelocal quantum
many-body systemswith finite-range interactions, ubiquitous
in condensed-matter physics. They can be described by some
interaction graph, with physical constituents at the vertices.
The system is governed by a Hamiltonian that can be written
as

H =
∑
j

hj . (1)

Most commonly considered are nearest-neighbour interac-
tions, where eachhj acts non-trivially on finitely many sites.
Paradigmatic examples of this type are spin lattice systems,

such as the Ising model, as well as bosonic or fermionic lat-
tice systems, prominently Fermi- and Bose-Hubbard models.
In the latter case, the Hamiltonian takes the form

H = J
∑
〈j,k〉

(b†jbk + b
†
kbj) + U

∑
j

nj(nj − 1), (2)

with nj = b
†
jbj , bj denoting the bosonic annihilation operator

at sitej, the parametersU, J being real and the sum〈j, k〉
running over nearest neighbours only. Common variants of
this are models with other short range interactions, or long
range interactions with a strength decaying polynomially in
the distance.

Equilibration after quenches

Investigating the fundamental connection between thermo-
dynamics and the dynamics of closed quantum systems has a
long tradition1 but has also been a key topic in recent years.
A very clean setting for non-equilibrium dynamics is the one
emerging from a suddenglobal quench2–9,11–16: Initially, the
system is in a stateρ0, which could be the ground state of a
local Hamiltonian. Then one quickly alters the system’s pa-
rameters globally and considers the many-body unitary time
evolution under some local HamiltonianH . Of specific inter-
est are expectation values of observablesA at later times

〈A(t)〉 = tr(e−itHρ0 e
itHA). (3)

A main question is to what extent and for what times the sit-
uation can be described by a suitable equilibrium ensemble.
Notably, the dynamics is time reversal invariant and for finite
systems recurrent, so a priori it seems far from clear how and
in what sense equilibrium can be reached dynamically.

A first important insight is that such systems generically
indeed relax and equilibrate in the following sense: Even
though the dynamics is entirely unitary, following transient
non-equilibrium dynamics, it is expectation values〈A(t)〉 of
many observablesthat equilibrate. This is specifically true for
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local observableswhich are supported only on a small num-
ber of sites. The apparent long time equilibrium state has to
be equal to the time average

ω = lim
T→∞

1

T

∫ T

0

dt e−itHρ0 e
itH . (4)

This state is themaximum entropy state, holding all constants
of motion fixed17. In case of non-degenerate eigenvalues of
the Hamiltonian, this ensemble is also called thediagonal en-
semble18. This feature is reminiscent of a dynamical Jaynes’
principle: A many-body system is pushed out of equilibrium
and follows unitary dynamics. Yet, for most times, the sys-
tems appears as if it had equilibrated to a maximum entropy
state.

The general expectation that many-body systems equili-
brate can be made rigorous in a number of senses: For some
free models, specifically for the case of the integrable non-
interacting limit of the Bose-Hubbard model, equilibration is
proven to be true in the strong sense of equilibration during
intervals: Here, one can show for local observablesA that
|〈A(t)〉 − tr(ωA)| is arbitrarily small after a known initial re-
laxation time, and remains so for a time that grows linearly
with the system size6,19. One merely has to assume that the
otherwise arbitrary initial state has suitable polynomially de-
caying correlations. At the heart of such a rigorous argument
are Lieb-Robinson bounds as well as non-commutativecentral
limit theorems.

If no locality structure is available or is made use of, one
can still show equilibration on average for all Hamiltoni-
ans that have non-degenerate energy gaps: One can bound
the time averageEt∈[0,∞)|〈A(t)〉 − tr(ωA)| by a quantity
that is usually exponentially small in the system size20,21.
This means that out of equilibrium quantum systems ap-
pear relaxed for overwhelmingly most times, even if by that
statement alone no information on time scales can be de-
duced. More refined bounds have been derived, also pro-
viding some information about the relevant time scales of
equilibration22,23, but they are far off from those observed in
numerical simulations4,7,12,16 and experiments14,24,25. These
findings are also related to further efforts of describing the
size of the time fluctuations after relaxation26,27.

By no means are sudden global quenches the only rele-
vant setting of quantum many-body systems out of equilib-
rium. Similarly important are scenarios oflocal quenches28,29,
where not the entire system is uniformly modified, but rather
the system is locally suddenly driven out of equilibrium
by a change limited to a bounded number of lattice sites.
Ramps12,30–33, during which the Hamiltonian is changed ac-
cording to some schedule, are of interest in studies of the dy-
namics of quantum phase transitions. The response of a sys-
tem to a sudden alteration of its geometry can be studied by
geometric quenches5,34,35. Time-dependent periodic drivingis
discussed in a separate section. In this brief review, closed
many-body systems are in the focus of attention. It should be
clear that specificallypump-probetype settings36 generate an
out of equilibrium situation that can be used as a diagnostic
tool in the condensed-matter context, giving rise to an inter-

esting research topic in its own right.

Thermalisation

The success of thermodynamics in describing large scale
systems indicates that often the equilibrium values can be de-
scribed by few parameters such as the global temperature and
particle number. We use the termthermalisationto refer to the
equilibration towards a stateω that is in a suitable sense close
to being indistinguishable from a thermal equilibrium state
proportional toe−βH for some inverse temperatureβ > 0.
There are several mechanisms that can lead to thermalisation
in this sense: The first is based on theeigenstate thermalisa-
tion hypothesis(ETH)9,37–40. It conjectures that sufficiently
complex quantum systems have eigenstates that — for phys-
ically relevant observables such as local ones — are practi-
cally indistinguishable from thermal states with the same av-
erage energy. The ETH and its breakdown in integrable sys-
tems have recently been investigated extensively, mostly with
numerical methods. Supporting evidence for it has been col-
lected in a plethora of models9,12,41–43.

Without invoking the ETH one can still rigorously show
thermalisation in weakly interacting systems under stronger
conditions on the initial state44. In addition, dynamical ther-
malisation of local expectation values to those in the global
thermal state45 has been shown under stronger conditions,
most notably translation invariance and the existence of a
unique Gibbs state. The notion ofrelative thermalisation46

focuses on the decoupling of a subsystem from a reference
system. So far, there is no compelling proof that globally
quenched non-integrable systems dynamically thermalise.

These dynamical approaches are complemented by works
based ontypicalityarguments47,48. Here, rather than following
the dynamical evolution of a system, one tries to justify the
applicability of ensembles by showing that most states drawn
randomly according to some measure have the same physical
properties as some appropriate ensemble such as the canonical
one.

If a quantum system is integrable49 in the sense that it has
local conserved quantities, one should not expect the system
to thermalise: These constants of motion prohibit full ther-
malisation to the canonical ensemble. One can still expect
the system to equilibrate to the maximum entropy state given
these locally conserved quantities15,17, a so calledgeneralized
Gibbs ensemble6,18. Effective thermalisation has been put into
context with unitary quantum dynamics under conditions of
classical chaos50.

Several quantum many-body systems exhibit some instance
of pre-thermalisation: This term refers to any apparent equi-
libration to a meta-stable state on a short time scale, before
— on a long time scale — the system relaxes to a state in-
distinguishable from a genuine thermal state. Examples are
almost integrable systems51,52 and continuous systems of cou-
pled Bose-Einstein condensates25.
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“Light cones” and entanglement dynamics

An important stepping stone for a better understanding of
the non-equilibrium dynamics of local Hamiltonian models is
the insight thatLieb-Robinson bounds53–55 limit the speed of
information propagation in such systems. There are several
ways of stating such bounds: One is to say that for any two
observablesA andB

‖[A(t), B]‖ ≤ c ‖A‖ ‖B‖min{|A|, |B|} e−µ (d(A,B)−v |t|),
(5)

whered(A,B) is the distance between the support of the ob-
servables,|A| and|B| the size of their supports,v ≥ 0 takes
the role of a group velocity, andc, µ > 0 are constants. That
is to say, information propagation outside a “light-cone” is
exponentially suppressed. It immediately follows that corre-
lation functions can significantly grow in time only inside the
light cone55. While these bounds are not necessarily tight, the
picture that the local dynamics leads to excitations traveling
through the system with velocityv offers a lot of explanatory
potential for non-equilibrium dynamics3,6,7,19,24,56,57. Such
light-cone dynamics has been experimentally observed in op-
tical lattice systems using novel tools that allow for single-site
addressing58 and in continuous systems of cold atoms25.

The light-cone-like propagation of information has implica-
tions onentanglement dynamics. Many-body states are said to
satisfy anarea lawfor the entanglement entropy, if for a sub-
set of sites the latter scales only like the boundary “area” of the
subset rather than its “volume”59,60. It has been shown that if
initially such a law holds, this will remain to be true for longer
times55,61. Yet, at the same time, the pre-factor of this area
law is expected to grow exponentially62. This is the ultimate
reason why numericaltensor network methods63,64, such as
thedensity-matrix renormalisation group method65, can sim-
ulate out of equilibrium dynamics efficiently for short times
on a classical computer, while long times are not accessible.
This is a feature shared by other powerful numerical meth-
ods as well, such asMonte-Carlo66 anddynamical mean field
theory (DMFT)67. This is in line with complexity-theoretic
arguments that provide evidence that generic quantum long-
time dynamics cannot be efficiently classically simulated68.
If interactions are not strictly local, modified Lieb-Robinson
bounds still hold53, giving rise to a rich phenomenologywhich
has been experimentally explored in systems of trapped ions
exhibiting long-range order57,69.

Transport

Understanding electronic transport is one of the main moti-
vations that started the field of condensed matter physics and
gave rise to a large body of work trying to accurately capture
the conductivity properties of these systems. Most relevant for
the purpose of this review are the transport properties of sim-
ple paradigmatic models such as the Heisenberg spin chain or
Hubbard-type models. In these models, transport is expected
to lead to equilibration, as it allows the system to locally forget
its precise initial configuration6,70. In spin chains, transport
typically refers to a spreading of magnetised domains71. In

optical lattices one commonly studies the transport of particles
starting from an initially trapped situation72,73, or of quasi-
particles57,58. Two of the key aims are to distinguish between
diffusive and ballistic transport and to understand the limita-
tions of linear response theory71. While simple, integrable
models can be solved exactly and thus provide an excellent
benchmark, our understanding of transport in realistic setups
heavily relies on numerical tools. Tools explicitly storing the
full wave function in the memory, such as exact diagonalisa-
tion, are limited to comparably small systems. Tensor network
tools such t-DMRG, TEBD, and variants thereof63,65 allow to
parametrize the state more efficiently and are accurate up to
machine precision as long as entanglement entropies are suf-
ficiently small74. Thus, for short and intermediate times these
tools allow for an investigation of transport and equilibration
in systems with several hundred sites14,16,71,73.

Absence of thermalisation and many-body localisation

Crucial for transport properties of materials is the influence
of irregularities such as defects. The impact of random poten-
tials on particle mobility has thus been the subject of inten-
sive study over the last century, culminating in the famous re-
sult of Anderson, showing full localisation both of the eigen-
functions as well as of the dynamics75 for single particledis-
ordered models. In the case of non-interacting fermions in
one dimension or equivalently, via the Jordan-Wigner trans-
formation, for free spin chains, Anderson’s result directly
gives strong localisation of all fermionic modes. This leads
to the entanglement entropy remaining upper bounded from
above76 and a vanishing Lieb-Robinson velocity77. These sys-
tems thus fail to serve as their own heat bath and transport
of any kind is completely suppressed. For interacting many-
body systems, the effects of disorder are still much less clear,
despite great efforts78. Interestingly, both the support of time
evolved local observables as well as the entanglement entropy
are found to grow logarithmically in the interacting case and
are thus unbounded76, in stark contrast to the non-interacting
case. Dynamical aspects of many-body localisation are ex-
pected to go along with localisation of the eigenstates. In
several recent studies localisation effects due to disorder have
been associated with a lack of entanglement in many energy
eigenstates17,79,80 or alternatively only in those below a so
calledmobility edge77,78. This could lead to a phase transi-
tion between a disordered insulator with exactly zero conduc-
tivity and a conducting phase78. The localisation of eigen-
states leads to a clear violation of the ETH and connects to
an absence of thermalisation effect for localising many-body
systems and the existence of local constants of motion in these
models17,79. While these signatures of many-body localisation
have been extensively explored, a comprehensive definitionof
many-body localisation is still lacking.

Dynamics of quantum phase transitions

Exploring the dynamical signatures of phase transitions is
an interesting problem in its own right. It connects to the im-
portant question of how slow an experimental ramp needs to



4

be to avoid the creation of defects when preparing a quan-
tum phase and whether this is at all possible in the thermody-
namic limit81. A key theoretical model for these transitions,
based on the adiabatic theorem, has been provided by Kibble
and Zurek30 for the important case of moving from a gapped
phase into criticality. Based solely on the critical exponents of
the model, this strikingly simple formalism predicts the num-
ber of introduced defects as a function of the velocity of the
ramp. It has originally been developed for thermal transitions,
where it has also been experimentally tested82–84. For quan-
tum phase transitions such a scaling can be derived in the limit
of infinitely slow ramps, based on universality arguments to-
gether with adiabatic perturbation theory81 and seems to be
capable of accurately describing the dynamics of quantum
phase transitions when crossing a single critical point in some
models30. For strongly correlated systems in realistic experi-
mental settings, the dynamics of quantum phase transitionsis
more elusive and there are indications that the complexity of
the dynamics cannot fully be captured by employing simple
scaling arguments based only on the critical exponents of the
model31,85. The transition out of criticality has also been in-
vestigated, both numerically86 and experimentally32. Despite
these first promising results, the dynamics of quantum phase
transitions and how to capture them in terms of simple scaling
laws is still a largely open problem.

Quantum simulations

When investigating the non-equilibrium behaviour of large-
scale many-body systems, analytical and numerical tools
quickly reach their limits, especially for lattice models in more
than one dimension. A particularly exciting perspective arises
from the idea that controlled quantum many-body systems
constitute instances ofanalogue quantum simulators14,31,87,88

overcoming these limitations. These devices mimic naturalin-
teracting quantum many-body systems by reconstructing their
Hamiltonian, but now under precisely controlled conditions.
This is in contrast todigital quantum simulators, anticipated
devices that approximate quantum dynamics by suitable quan-
tum circuits. Such analogue systems enable one to investigate
some of the questions central to the research summarised in
this review.

Ultra-cold atoms in optical latticesprovide a very
promising platform for quantum simulators in this
sense89. With present technology they can be used to
investigate dynamics under Bose- and Fermi-Hubbard
Hamiltonians2,14,31,32,58,72,73,85,90–92 as well as for emulating
spin chains93. Due to the flexibility of optical lattice sys-
tems, e.g., by making use of Feshbach resonances, periodic
driving, and superlattices, even sophisticated quantum
simulations are conceivable, e.g., the simulation oflattice
gauge theories94. Continuous optical setups allow for the
investigation of out-of-equilibrium behaviour of quantum
fields95 and have successfully been employed to investigate
(pre-)thermalisation25 and out of equilibrium dynamics not
leading to equilibration on relevant time scales96.

Another promising architecture is provided byion
chains97, allowing for the precise control of the individual

constituents83,98. Due to the involved Coulomb interaction,
these systems are, among many other applications, well suited
to explore the validity of Lieb-Robinson bounds and their
breakdown for long-range interactions57,69. Photonic archi-
tecturesas well as arrays ofsuperconducting qubitsoffer fur-
ther promising platforms. While the precisecomputational
complexityof analogue simulators has not been identified yet,
and while it is unclear to what extent genuinely reliable ana-
logue simulation is possible in the absence of fully-fledged
quantum error correction, there is evidence that such ana-
logue simulators have the potential of outperforming classi-
cal computers. Quantum many-body dynamics can already
be probed in experimental settings under precisely controlled
conditions for longer times than can be kept track of using
state-of-the-art tensor network methods on modern classical
supercomputers14.

Periodically driven systems

Periodically driving a well controlled quantum system
opens up new vistas for quantum simulations. Consider a
system with a Hamiltonian that satisfiesH(t) = H(t + τ)
for all times t for some periodτ > 0. The eigenstates of
such systems are usually constantly changing in time, but the
long time dynamics can be inferred from theirFloquet opera-
tor99,100 U(τ), which is the time evolution operator over one
period of driving. The Floquet operator gives rise to an effec-
tive HamiltonianHeff via

U(τ) = e−iτHeff , (6)

and the time evolution of the driven system can be seen as
a stroboscopic simulation101,102 of the time evolution under
Heff . The effective Hamiltonian can be tuned by choosing
an appropriate driving schedule with great flexibility concern-
ing the model parameters. This allows the study of topolog-
ical effects102 in driven systems and can be used to engineer
gauge fields101. This has lead to an experimental realisation
of thetopological Haldane modelin a periodically modulated
optical honeycomb lattice103 as well as to experimental se-
tups featuringHofstadter bands104 andspin-orbit coupling105

in optical lattice architectures106. The synchronisation of the
motion of periodically driven systems with the drive allows
the description of the long time behavior by aperiodic ensem-
ble. For free systems it turns out to be given by a maximum
entropy ensemble given the constants of motion107 — remi-
niscent of Jaynes’ principle for systems in equilibrium andthe
generalised Gibbs ensemble emerging during equilibrationaf-
ter a quench.

Perspectives for open and closed systems

The research field of quantum many-body systems out of
equilibrium is rapidly developing and is taking new and un-
expected directions at a remarkably high rate. This is par-
tially driven by the impetus the field is subjected to through
novel experimental developments. In optical lattice systems,
single-site addressing32,58,108 opens up new possibilities for
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probing the out of equilibrium dynamics; settings with pe-
riodic driving now allow for the study of topologically non-
trivial situations102 and to develop a deeper understanding of
particle physics and condensed matter systems101. Continuous
systemscan be controlled with ever increasing precision25,95,
suggesting that such systems can serve as a platform for prob-
ing even effects ofgravity, such as the Unruh effect109,110.
Hybrid architectures, such as cold atoms in optical lattices in-
side an optical cavity, constitute a particularly promising av-
enue for experimental research111. Crucial for further progress
will be a deeper understanding of the computational capa-
bility of analogue quantum simulators and how their correct
functioning can be certified in regimes that are classicallynot
addressable14,31,88,90.

At the same time, new theoretical developments keep the
subject exciting, withquantum information theoryproviding
a fresh point of view and new methods.Entanglement theory
can deliver important new insights specifically for the study
of information propagation56,59–61. Quantum thermodynam-
ics112 — exploring the ultimate limits of thermodynamic pro-
cesses in the quantum regime — is now seeking contact with
this field113, with interesting perspectives opening up. The
AdS-cft-correspondencealso contributes a novel tool to study
strongly correlated quantum systems out of equilibrium114.

In spite of the great progress, many questions are still wide
open, even very basic ones. While it is understood under
which conditions many-body systemsequilibrate, it is far
from clear on whattime scalesthey do so. The main reason
for this is that the role oflocality for equilibration and ther-
malisation is, at least from a rigorous perspective, far from
being understood. Steps in this direction have been taken only

very recently45,53–55,61,115. The conditions forthermalisation
are less clear and it is questionable whether (non-)integrability
is able to capture this phenomenon in all of its facets17,49. The
problem ofmany-body localisationhas recently moved in the
focus of attention79,80, but it seems fair to say that in the light
of the various pictures of the phenomenon in the literature,a
unifying framework is still missing.

A research area that deserves special attention is based on
the idea that noise and dissipation are not necessarily detri-
mental to attempts to prepare and preserve interesting states
of matter. In fact such preparations can be facilitated by suit-
ably engineered local Markovian noise116 that can be rigor-
ously captured in terms of a Liouvillian. In this mindset, an
open system quantum simulator with trapped ions has been
realised117, as well as one based of cold atoms controlled
with localized dissipation118. In principle, even symmetry-
protected topologically ordered states can be prepared by
purely dissipative local Liouvillian dynamics119.

It goes without saying that this perspectives article merely
touches the surface of this exciting and rapidly developing
field. Quantum many-body systems out of equilibrium al-
low us to probe long-standing questions in the foundations of
statistical mechanics, relate to open questions in condensed-
matter theory, and provide a promising platform for analogue
quantum simulators outperforming classical computers.
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